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A B S T R A C T

In digital image correlation (DIC), speckle patterns are generated on the surface of a specimen to resolve
uniqueness issues. Thus, speckle patterns significantly affect the accuracy of image correlation. To assess the
quality of speckle patterns, the standard deviation of gray intensities within each speckle (SDGIS) is introduced
as a new metric. On the basis of the cumulative distribution of SDGIS, speckle-pattern quality measurement (ρ)
is proposed, which integrates the features of gray intensity and speckle morphology. Twelve speckle patterns are
generated by changing the spraying time and nozzle sizes of an airbrush because these are associated with the
speckle volume fraction and speckle size, respectively. In addition, three displacement fields are used to
investigate the effects of speckle patterns on the accuracy of the DIC results. For the 12 speckle images
associated with the three displacement fields, the correlation results demonstrate that the proposed speckle-
pattern quality measurement is inversely proportional to the averaged error of the subset method. This is
statistically confirmed by evaluating the correlation coefficient and p-value. Furthermore, the error of the subset
method is more affected by speckle patterns than the subset size when the subset size is sufficiently large.

1. Introduction

Digital image correlation (DIC) is an effective optical technique
used to measure surface deformation in the field of experimental
mechanics. Owing to the rapid advances in optical and computer vision
technologies, DIC has been extensively employed in various engineer-
ing applications [22,30]. For example, DIC techniques were employed
to investigate various material properties, such as those of metals
[2,26], brittle materials [1,11,18], quasi-brittle materials [7,27], thin
films [15], interfacial debonding [5], biological materials [35], and
others.

To improve the accuracy of optical measurements, several image-
correlation algorithms were developed [16,29,6]. For example, a linear
approximation of a deformation map was extensively used [29,31,4].
Subsequently, Lu and Cary [16] introduced mapping parameters in
conjunction with the second-order Taylor series approximation of a
displacement field. To provide compatibility requirements among
subset deformations, Cheng et al. [6] developed a full-field image
correlation using the B-spline deformation function. In addition,
Poissant and Barthelat [25] extended the subset method to account
for a discontinuous displacement field by employing a subset-splitting
procedure. Pan et al. [24] modified the subset-based method to

measure the displacement of arbitrary shapes of selected regions of
interest. Cofaru et al. [8] proposed an adaptive image-correlation
technique by specifying subsets as irregular shapes in conjunction with
speckle patterns. Recently, Yuan et al. [34] has automatically deter-
mined the subset size in relation to the necessary amount of speckle
information.

For accurate estimation of a strain field, a displacement field is
smoothened by employing several techniques [17,21,22,28,32]. For
instance, Sutton et al. [28] proposed to smoothen a computed
displacement field using a penalty finite element method, whereas
Meng et al. [17] utilized the finite element method and a generalized
cross-validation algorithm. Wattrisse et al. [32] and Pan et al. [21]
employed a local least-square fitting technique to filter noisy displace-
ment data.

Furthermore, speckle patterns significantly affect the accuracy of
the correlation results because they are associated with their unique-
ness. Thus, the evaluation of the speckle-pattern quality is one of the
essential aspects in DIC. Previously, speckle patterns were assessed
using several metrics in terms of the gray-level intensities or morpho-
logical features. For example, a subset entropy [33] and a mean subset
fluctuation [12] were defined according to the differences in the gray
intensities among adjacent pixels. Pan et al. [20,23] utilized a sum-of-
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square subset intensity gradient and a mean intensity gradient for
quality assessment of speckle patterns. In addition, Fazzini et al. [10]
investigated the effects of image encoding and image saturation on the
correlation error. However, numerically generated synthetic patterns
were utilized, instead of actual speckle patterns, in all the aforemen-
tioned metrics. Moreover, the morphological features of synthetic
patterns may be different from those generated by an airbrush.

To account for the local morphological features in speckle patterns,
Lecompte et al. [14] estimated the size of speckle patterns by
converting a gray-scale image to a binary image and calculated the
cumulative percentage of the speckle sizes. We note that they generated
a single speckle pattern and obtained three different speckle sizes using
images generated at three different distances. Crammond et al. [9] also
evaluated the cumulative percentage of speckle sizes for two types of
speckle patterns: a) speckle patterns generated by an airbrush and b)
speckle patterns generated by spray painting. However, in actual
experiments, various speckle patterns can be generated by changing
the experimental conditions such as nozzle sizes, air pressure, spraying
distance, airbrush conditions, and others. Furthermore, none of the
previous studies showed a direct relationship between the DIC error
and quality assessment of speckle patterns. In this context, a metric,
which represents the quality of speckle patterns, should be based on
both gray-level intensity and local morphological features and be valid
under various experimental conditions.

In the present study, various speckle patterns are quantified by
introducing a speckle-pattern quality measurement (ρ) based on the
standard deviation of gray intensities within each speckle (SDGIS). We
note that SDGIS accounts for both gray-level intensity and speckle
morphology. To confirm the consistency of the proposed measurement,
various speckle patterns are first generated by changing the spraying
time and nozzle sizes of an airbrush, which leads to the variation in the
speckle volume fraction and speckle sizes. For such speckle patterns,
the DIC results demonstrate that the values of ρ are inversely
proportional to the averaged errors of the DIC. The remainder of this
paper is organized as follows. Section 2 briefly explains the DIC
principle. In Section 3, various speckle patterns generated by changing
the spraying time and nozzle sizes are presented. Quantification of the
generated speckle patterns based on SDGIS is discussed in Section 4.
Section 5 demonstrates three computational experiments, i.e., uniaxial
compression, three-point bending, and mode-I fracture, for the gener-
ated and quantified speckle patterns as well as the subsequent
statistical estimation of the relationship between ρ and the averaged
DIC error. Finally, the key findings of this study are summarized in
Section 6.

2. DIC principle

In DIC, the gray intensity of a reference image is compared with
that of a deformed image. We note that a reference image corresponds
to an undeformed state of a deformed image. In the present study, the
displacement field within a region of interest is evaluated using the
subset method with a second-order approximation of the displacement
field [16].

The gray-level intensity of each subset in a reference image is
correlated to the gray-level intensity of each subset in a deformed
image. A subset in a reference image is generally selected as a square
with a size of (2m+1) by (2m+1) pixels, where m is an integer. Given
that point (xn, yn) of the nth subset in a reference image is displaced at
point (xn, yn) in the nth subset of a deformed image, as shown in Fig. 1,
we can obtain the following relationships:

x x u= +n n n (1)

y y v= +n n n (2)

where un and vn are the horizontal and vertical displacement fields,
respectively, of a point in the nth subset. The horizontal and vertical

displacement fields are approximated by employing the second-order
Taylor series expansion around the origin of the local coordinates (ξ, η)
of a subset [16]. These are expressed as
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where un0 and vn0 are the horizontal and vertical displacements,
respectively, at ξ=0 and η=0, i.e., the displacements of the center (or
grid) point of a subset.

The horizontal and vertical displacements of the grid points are
evaluated by minimizing the square of the gray-level intensity differ-
ence (Ψn) of the nth subset between a reference image and a deformed
image, i.e.,
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where npx is the number of pixels in the nth subset of a reference image
[i.e., npx=(2m+1)2]. We note that I p( )r i is the gray-level intensity of the
ith pixel (pi) in the reference image, whereas λI p( , )d i n is the gray-level
intensity of the ith pixel (pi) in the deformed image. The gray-level
intensity (Id) in the deformed image is evaluated using the bicubic
spline interpolation.
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where xp and yp are the nearest pixel position of (xn, yn), respectively,
in the deformed image and βst is the fitting coefficient obtained from
the adjacent gray-level intensities. In addition, a gray-level intensity
offset (χ) is considered between the reference and deformed images due
to changes in the light. The vector of the mapping parameters (λn)
consists of a gray-level intensity offset and 12 coefficients from the
second-order Taylor series expansion.

3. Generation of speckle patterns

Various speckle patterns are generated by changing the volume
fraction and speckle sizes. The volume fraction is addressed by
changing the spraying time, whereas the various speckle sizes are
obtained by changing the nozzle sizes of an airbrush. After generating
various speckle patterns, images of the speckle patterns are obtained
using a camera (in this instance, a Canon EOS 5D Mark II). The focal
length and object distance are 180 mm and 0.54 m, respectively, with a
pixel size of 8.5 µm.

In this study, three speckle volume fractions (i.e., low, medium, and
high) are employed with respect to four nozzle sizes of 0.2, 0.5, 1.0, and
1.2 mm, which lead to 12 cases of speckle patterns. To calculate the
speckle volume fraction, the image of the random speckle patterns is
converted to a binary image, which consists of black and white,
according to the threshold of the gray-level intensity. We note that
the threshold is selected by maximizing a discriminant measurement,
known as the Otsu method [19]. The calculated volume fractions of the
12 cases of speckle patterns with an image size of 3000×3000 pixels are
listed in Table 1. Fig. 2 shows the speckle patterns and their binary
images for the regions of interest spanning 100×100 pixels with a
nozzle size of 1.0 mm according to the change in the speckle volume
fraction. For longer spraying times, the small speckles are merged, and
relatively larger speckles are generated, which result in the appearance
of darker areas, i.e., higher volume fractions. Fig. 3 shows that the
increase in the nozzle size leads to larger speckle sizes, as expected,
when the speckle volume fraction is in the medium range.

The combinations of the three volume fractions and four nozzle
sizes lead to various gray-level intensity distributions within an image.
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