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A B S T R A C T

The accuracy and precision of digital image correlation (DIC) is based on three primary components: image
acquisition, image analysis, and the subject of the image. Focus on the third component, the image subject, has
been relatively limited and primarily concerned with comparing pseudo-random surface patterns. In the current
work, a strategy is proposed for the creation of optimal DIC patterns. In this strategy, a pattern quality metric is
developed as a combination of quality metrics from the literature rather than optimization based on any single
one of them. In this way, optimization produces a pattern which balances the benefits of multiple quality
metrics. Specifically, sum of square of subset intensity gradients (SSSIG) was found to be the metric most
strongly correlated to DIC accuracy and thus is the main component of the newly proposed pattern quality
metric. A term related to the secondary auto-correlation peak height is also part of the proposed quality metric
which effectively acts as a constraint upon SSSIG ensuring that a regular (e.g., checkerboard-type) pattern is not
achieved. The combined pattern quality metric is used to generate a pattern that was on average 11.6% more
accurate than a randomly generated pattern in a suite of numerical experiments. Furthermore, physical
experiments were performed which confirm that there is indeed improvement of a similar magnitude in DIC
measurements for the optimized pattern compared to a random pattern.

1. Introduction

The accuracy and precision of digital image correlation (DIC) is
based on three primary components: image acquisition, image analysis,
and the subject of the image. Development of the first two (i.e., image
acquisition techniques and image correlation algorithms) has led to
widespread use of DIC [1–11]; however, fewer developments have been
focused on the third component. Typically, subjects of DIC images are
mechanical specimens with either a natural surface pattern or a pattern
applied to the surface. Research in the area of DIC patterns has
primarily been aimed at identifying which surface patterns are best
suited for DIC, by comparing multiple patterns [12,13,11,14–17].
Because the easiest and most widespread methods of applying patterns
have a high degree of randomness associated with them (e.g., airbrush,
spray paint, particle decoration, etc.), less effort has been spent on
exact construction of ideal patterns. With the development of pattern-
ing techniques such as microstamping and lithography, patterns can be
applied to a specimen pixel by pixel from a patterned image [18,19]. In
these cases, especially because the patterns are reused many times, an

optimal pattern is sought such that error introduced into DIC from the
pattern is minimized.

DIC consists of tracking the relative motion of an array of nodes
from a reference image to a deformed image. Every pixel in the images
has an associated grayscale (intensity) value, which for the purpose of
the current work is assumed to be between 0 (black) and 1 (white), with
discretization depending on the bit depth of the image. Because
individual pixel matching by grayscale value yields a non-unique
scale-dependent problem, subsets of (2 M+1) by (2 M+1) pixels around
each node are used for identification, where M is the number of whole
pixels from the center to edge of the subset. A correlation criterion is
used to find the best match of a particular subset of a reference image
within a deformed image. The reader is referred to [8,10,7] for
enumerations of typical correlation criteria. A common choice which
will be used herein, is the zero-normalized cross-correlation (ZNCC)
coefficient:
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where f x y( , )i j is the grayscale value of a pixel at location x y( , )i j in the
reference image and g x y( ′ , ′ )i j is the grayscale value at location x y( ′ , ′ )i j

in the deformed image. Mapping functions from x y( , )i j to x y( ′ , ′ )i j ,
which are commonly referred to as subset shape functions, account for
the displacement and distortion of the subset. As illustrated by Schreier
and Sutton [5] and Lu and Cary [6] systematic errors can be introduced
by representing the underlying deformation with under-matched shape
functions. An important implication, as discussed by Sutton et al. [7], is
that in the presence of highly localized deformations (e.g., crack fronts)
error can be reduced by minimizing the subset size. In other words,
smaller subsets allow more accurate resolution of localized deforma-
tions. Contrarily, the choice of optimal subset size has been widely
studied [20–22,13,23,12] and a general consensus is that larger
subsets with more information content are more robust to random
error. Specifically, this has been shown for the case of over-matched
shape functions in which larger subsets sizes must be used to offset
increased amounts of random error [24]. Thus, an optimal subset size
balances the systematic error from under-matched deformations with
random error from measurement noise and over-matched deforma-
tions [13].

The alternative approach pursued in the current paper is to choose
a small subset size and optimize the information content therein (i.e.,
optimizing an applied DIC pattern), rather than finding an optimal
subset size. Recently, the auto-correlation function has been used as a
means of identifying favorable properties of a pattern [20,16,17,25].
The auto-correlation function A is a correlation of a reference image
with itself, or more precisely: A u v C( , ) = where
g x y f x u y v( ′ , ′ ) = ( + , + )i j i j . Bossuyt [25] even goes as far as to create
DIC patterns based on the supposition of the optimal frequency content
of A.

If a quantitative metric for a pattern's suitability for accurate and
precise DIC measurements is identified, this pattern quality metric can
be utilized in an optimization procedure that produces ideal patterns.
Though many DIC pattern quality metrics have been proposed in the
literature, they have unfavorable properties, such as non-optimal
patterns which maximize the metrics, which make them ill-suited for
use in pattern optimization. In the current work, a new metric for
pattern quality is introduced that is better suited for optimization.
Specifically, the new metric derives from multiple metrics in the
literature, such that the unfavorable properties of each are avoided.

The remainder of the current paper is structured as follows. In
Section 2, common pattern quality metrics from the literature are
reviewed. Section 3 discusses the reasons why each metric, alone, is not
suitable for optimization. Section 4 introduces a multi-metric optimi-
zation strategy and discusses a pattern created using the strategy,
including a performance comparison to a purely randomly generated
pattern when subjected to numerical deformations. In Section 5,
physical experiments are performed which both validate the previously
used numerical assessment and confirm the improved performance of
the optimized pattern.

2. DIC pattern quality metrics

The ultimate goal of any DIC pattern assessment is to determine

which aspects of a pattern are responsible for introducing error into the
DIC measurements. The most straight forward way to approach this is
simply to perform DIC tests with a known deformation and multiple
patterns, where the relative errors introduced by each pattern can be
calculated from the DIC measurements. An example of this methodol-
ogy is seen in the work of Haddadi and Belhabib [11] where rigid body
displacements and several patterns were used to estimate the effect of a
pattern on DIC accuracy. Especially in the case of experimentally-based
pattern assessments like the above, a large effort is required to make a
single assessment of a pattern. The development of pattern quality
metrics has been aimed at more efficiently assessing a pattern's
suitability for DIC based on a single image of the pattern. Many unique
pattern quality metrics have been proposed in the literature, several of
which will be described herein.

Before introducing the pattern quality metrics considered in the
current work, it is important to make a subtle but important distinction
between a pattern and the image captured by the image acquisition
system. Aside from environmental and optical noise added by the
imaging system, patterns and images will also differ in scale. In other
words, a single pixel in a pattern may correspond to multiple image
pixels, depending on the level of magnification. It is assumed that the
pattern quality metrics discussed herein, when applied to a pattern, are
representative of the DIC performance using images taken of the
pattern at any increased magnification.

2.1. Sum of square of subset intensity gradients

During image acquisition, experimental noise is inevitably added to
the images. An ideal pattern is robust to the noise. In one dimension,
assuming zero-mean Gaussian noise with standard deviation, σ, is
added to each of the images, error in displacement measurements have
variance of approximately:
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where ϵ is the difference between the true displacement and the
measured displacement [26,22,7,27]. The subscript x denotes partial
differentiation with respect to x. It should be noted that, when
interpolation is used in the reconstruction of f x y( , ) or g x y( ′, ′) at
non integer (pixel) displacements, a bias error is also present [7]
where:
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From the above equations, it can be seen that an increase in the term
under the square roots in Eqs. (3) and (4), which is known as the sum
of square of the subset intensity gradient (SSSIG), has the effect of
decreasing the variance of errors and reducing bias error; this has also
been shown by the numerical experiments of Pan et al. [28].
Additionally, SSSIG was used as a local quality metric by Pan et al.
[22] in order to determine an adequate subset size given a pattern.

The derivations of the expectation and covariance of displacement
errors has also been extended to two-dimensions showing similar
functional forms [27]. Importantly, the two-dimensional formulations
also indicated that the variances in each direction are not independent.
In the current work, the following two dimensional definition of SSSIG
(denoted S) is used:
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where f x y f x y f x y▿ ( , ) = ( , ) + ( , )i j x i j y i j
2 2 . Note that the definition is an

extension of the original one dimensional SSSIG definition to two-
dimensions in a manner similar to Pan et al. [28]. Implementation of S
throughout the current work utilizes finite difference estimates of the
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