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A B S T R A C T

In this work, we present a novel method to handle two-dimensional shape or wavefront reconstruction from its
slopes. The proposed integration method employs splines to fit the measured slope data with piecewise
polynomials and uses the analytical polynomial functions to represent the height changes in a lateral spacing
with the pre-determined spline coefficients. The linear least squares method is applied to estimate the height or
wavefront as a final result. Numerical simulations verify that the proposed method has less algorithm errors than
two other existing methods used for comparison. Especially at the boundaries, the proposed method has better
performance. The noise influence is studied by adding white Gaussian noise to the slope data. Experimental data
from phase measuring deflectometry are tested to demonstrate the feasibility of the new method in a practical
measurement.

1. Introduction

Two-dimensional integration methods [1–4] are widely applied to
reconstruct the height or wavefront from the measured gradient data in
slope metrology, such as deflectometry [5,6] and wavefront sensing
[7,8] etc.

The pioneer studies in two-dimensional integration can be found in
wavefront reconstruction since the late 1970s [9–13]. Among these
classical studies, Southwell's method [13] received great attention and
success because of its good performance and simple implementation
with the well-known Southwell geometry. It becomes the representative
of the zonal integration methods. However, the integration accuracy is
limited since it assumes the height distribution between two sampling
points is only quadratic, which is not always true in reality. Based on
this observation, an iterative compensation method was proposed to
improve the accuracy [14]. By analyzing the Taylor theorem and
truncation error, Li et al. proposed a straightforward method with
higher order finite difference format [15], which is elegant and
outperforms in a comparison [3] as it is more accurate than the
traditional Southwell's method, and faster than the iterative method.
Recently, Ren et al. proposed an easy implementation of Li's method for
incomplete dataset or even in arbitrary domain [16].

In this work, we present a novel spline based least squares method

for two-dimensional shape or wavefront reconstruction from slopes in
rectangular grids. Benefitted from high accuracy of spline fitting, the
reconstruction accuracy can be improved. A comparative study with
Southwell's method and Li's method is conducted in this work. The
three methods share the same grid geometry (the Southwell geometry),
as shown in Fig. 1. One of the beauties of this grid geometry is that the
height reconstruction happens exactly at the same locations of slope
measurement.

2. Principle

In the proposed method, the zonal relations of the neighboring
height values are described as
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where x x xΔ = −m n m n m n, , +1 , and y y yΔ = −m n m n m n, +1, , are the x- and y-
step sizes at matrix location (m, n) as show in Fig. 1. cm n k
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y
, , are

the coefficients of the kth order piecewise polynomials starting at (m,
n), which are determined through the cubic spline fitting of the mth row
of x-slopes and the nth column of y-slopes, respectively.

For instance, the x-slope at (m, n+1) and y-slope at (m+1, n) can be
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represented by piecewise polynomials starting at (m, n) as
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The measured slopes and unknown height are consequently de-
scribed with piecewise cubic and quartic polynomials, respectively.
More significantly, slopes at boundaries of the dataset can be easily and
accurately represented by setting the boundary condition of splines as
the “natural boundary condition”.

By integrating the analytical polynomial functions in Eq. (2) or Eq.
(3) with the spline determined coefficients cm n k

x
, , or cm n k

y
, , , the height

difference after a lateral step xΔ m n, or yΔ m n, can be calculated through
the right hand sides of Eq. (1). The linear least squares solution of
height can be described as
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where the symbol (⋅)Tstands for the transpose operation, and (⋅)−1 is the
matrix inverse. The sparse matrix D and vector G are
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3. Simulation

In order to illustrate the excellent performance of the proposed
method, a two-dimensional cosine function with varying local frequen-
cies z πx πy= cos(2 /3000)⋅ cos(2 /3000)2 2 is selected as the Surface Under
Test (SUT) to reconstruct as shown in Fig. 2(a). Its corresponding
analytically derived x-slope and y-slope are shown in Figs. 2(b) and (c).
We set x-unit the same as y-unit and named as “lateral unit,” [l. u.], and
z-unit is symbolled as [z. u.]. The in-plane coordinates are sampled as
x=1, 2…, 256 [l. u.] and y=1, 2 …, 256 [l. u.]. The value of height
ranges in± 1 [z. u.], and both x-slope and y-slope range within± 1 [z.
u. / l. u.], so the Peak-To-Valley (PTV) of the slopes are 2 [z. u. / l. u.]
for the simulated SUT.

Three integration methods (Southwell's method [13], Li's algorithm
1 in Ref. [15], and our spline-based method in this work) are applied to
reconstruct height from the slopes in Fig. 2(b-c) for a comparison. All
these methods share the same sparse matrix D, which has the less
memory cost and computing time for the matrix inverse operation
comparing to other two algorithms in Ref. [15]. It is a big advantage in
handling huge slope datasets. This is one of reasons why we compare
these three methods.

The reconstruction errors are illustrated in Fig. 3. It indicates that
these zonal methods make larger reconstruction errors in higher
frequency regions. For comparison purposes, Southwell's method has
the largest reconstruction error with its Root Mean Square (RMS)
=2.6×10−2 [z. u.] and PTV =0.19 [z. u.]. Li's reconstruction method
ends up with errors of RMS =5.8×10−3 [z. u.] and PTV =0.17 [z. u.]
showing significant improvement compared with Southwell's method.
Lastly, the proposed method outperforms the others with reconstruction
errors of RMS =9.6×10−4 [z. u.] and PTV =0.03 [z. u.] only.

It is obvious that the proposed spline-based method has better
estimation at regions with high-frequency variations. More signifi-
cantly, splines have naturally good performance at dataset boundaries.
In contrast, four neighboring slopes in one direction are always
required in Li's algorithm 1 in Ref. [15] which cannot be satisfied at

Fig. 1. In Southwell geometry, the height is reconstructed at the same locations where
slopes are measured. In our method, slopes are fitted with cubic splines to represent
height differences between spacing.

Fig. 2. A surface height (a) with varying local frequencies is chosen as the benchmark in simulation to test the performance of different methods in height reconstruction from x-slope (b),
and y-slope(c).
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