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A B S T R A C T

This paper proposes a novel temporal phase unwrapping method which is a generalization of the three
commonly proposed approaches: hierarchical, heterodyne, and number theoretical phase unwrapping. The
proposed unwrapping method is based on the orthographic projection of wrapped phases from the
measurement space to the space of co-dimension 1. In the space of co-dimension 1 all unknown integer
period-order numbers are computed simultaneously using a nearest-neighbor search on a fixed constellation of
points. The proposed method offers new key insights about relationship between unwrapping success rate, noise
limit, and maximum unwrapping range. We give example how the proposed method may be applied in the
multiple frequency phase shifting profilometry.

1. Introduction

The problem of phase unwrapping arises in many applications such
as structured light profilometry [1], optical interferometry [2], inter-
ferometric synthetic aperture radar (InSAR) [3], and magnetic reso-
nance imaging [4], to name a few. The problem is characterized by the
fact the phase is measurable modulo-2π only. Formally, let Φ denote
the true phase value and let ϕ denote the phase measured modulo-2π;
then

Φ ϕ πk= + 2 , (1)

where Φ is the true or absolute phase, ϕ is the wrapped or principal
phase, and k ∈  is an unknown integer which models the phase
ambiguity and is sometimes called period-order or fringe-order
number. The task of phase unwrapping methods is to unwrap the
wrapped phase ϕ and obtain the true phase Φ.

Various approaches to phase unwrapping proposed in the literature
may be classified into two broad groups: spatial [5] and temporal [6]
phase unwrapping. Spatial phase unwrapping methods use only one
frequency and unwrap the phase via spatial analysis of a two-dimen-
sional wrapped phase map. Temporal phase unwrapping methods use
more than one frequency and unwrap the phase via temporal analysis
of multiple wrapped phase values for each sample point separately. In
essence, temporal methods assume temporal invariance of phase
values while spatial methods assume spatial continuity of phase
values. The temporal approaches to phase unwrapping provide an
exact solution and are therefore the method of choice for all applica-
tions where the phase is temporally invariant.

Approaches to temporal phase unwrapping are usually classified

into three groups [6]: hierarchical methods [7–13], heterodyne meth-
ods [14–18], and number-theoretical methods [19–23]. In this paper
we propose a novel temporal phase unwrapping method that may be
considered a generalization of all of the three aforementioned ap-
proaches. It unwraps the phase in the same way regardless of
wavelengths selected; the proposed method therefore has minimal
constraints on wavelengths. The proposed method is based on the
orthographic projection of wrapped phases from the measurement
space to the space of co-dimension 1. In the space of co-dimension 1 all
unknown integer period-order numbers are computed simultaneously
using a nearest-neighbor search over a fixed constellation of points.
The nearest-neighbor search replaces the rounding operator of the
existing approaches and offers optimal performance with regard to
noise. The proposed method is simple to implement and is not
computationally expensive as it requires one matrix multiplication
and one nearest-neighbor search to determine the correct period-order
numbers.

Besides describing a novel temporal phase unwrapping method we
also provide several new key insights: (a) for a desired unwrapping
success rate there exists a hard limit on allowed noise which is directly
computable given the chosen wavelengths without the need to run
numerical simulations; (b) the exponential frequency sequence with
basis 2 has the largest tolerance to noise; and (c) the choice of
frequencies whose ratio is rational provides better noise tolerance than
using frequencies whose ratio is irrational.

This paper is structured as follows: In Section 2 we give a brief
overview of both spatial and temporal phase unwrapping methods. In
Section 3 we describe the proposed temporal phase unwrapping
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method. In Section 4 we give noise analysis and we compare the
proposed method to each of the three classes of temporal phase
unwrapping methods. In Section 5 we present computer simulations
and we show how to apply the proposed temporal phase unwrapping
method to the problem of multiple phase shifting surface profilometry.
We conclude in Section 6.

If the reader is only interested in implementing the proposed
unwrapping method then reading the introduction to Section 3 and
Subsections 3.1 and 3.3 is sufficient.

2. A brief review of phase unwrapping

Approaches to phase unwrapping may be classified into two distinct
groups: spatial and temporal approaches. Spatial approaches are
especially suitable for problems where phase may change in time or
where repeated measurements are prohibitively costly or impossible to
perform. Spatial approaches are also limited in their ability to handle
discontinuities in phase; due to the periodic structure of the phase
observation there exist discontinuities that cannot be uniquely deter-
mined using spatial analysis of the observed phase data [24]. Temporal
approaches were introduced due to their ability to handle any kind of
discontinuities in phase. They are limited to problems where phase is
temporally invariant and where repeated measurements are possible.

2.1. Spatial phase unwrapping

In spatial phase unwrapping the true phase is determined from one
two-dimensional phase measurement. As there is only one wrapped
phase value per sample point the unwrapping is an ill-posed problem;
Eq. (1) does not have an unique solution unless further information is
added [5]. To make the problem solvable spatial phase unwrapping
methods assume the phase difference between two adjacent points
varies smoothly, i.e. the absolute wrapped phase difference is less than
π. This assumption is also known as Itoh's condition [25]. If Itoh's
condition is satisfied then the true phase derivative may be estimated
from the finite differences of the wrapped phase values making the true
phase recoverable up to a constant by integration. Unfortunately, the
Itoh's condition is easily violated if the phase measurements are noisy
or if the true phase contains discontinuities thus making naive
integration inapplicable in real-world applications. To overcome this
the areas where phase derivatives can not be estimated are usually
detected and are then avoided in the integration process.

Approaches to spatial phase unwrapping may be roughly classified
as: (a) path-following methods [3,26–29]; (b) optimization methods
[24,30-34]; and (c) parametric methods [35,36].

The path-following methods unwrap the wrapped phase on paths
either by integrating the estimated phase differences or by adding a
whole number of cycles to the unwrapped phase thus reducing the
phase difference to less than half-cycle. Regardless of how the
unwrapping on paths is implemented, the path-following methods
significantly differ in the way the paths which achieve the path-
independent phase unwrapping are chosen: branch-cuts are used in
[3] and quality or reliability maps are used in [26–29].

The optimization methods do not unwrap the phase on paths but
instead cast the phase unwrapping problem as an optimization of some
objective function. Most often the objective function used is Lp norm of
the difference between absolute phase differences and wrapped phase
differences [30–34], although Bayesian approaches which find MAP
phase estimate are also used [24,34]. The solution for L2 (least-
squares) unwrapping is given by Ghiglia and Romero [30] and is
extended to regularized least-squares by Marroquin and Rivera [31].
Ghiglia and Romero extended their least-squares solution to cases
p < 2 in [32]. An efficient solution for L1 norm is given by Costantini
[33].

The parametric methods constrain the phase to some predeter-
mined parametric model, usually a low-order polynomial [35,36]. The

parametric approaches yield excellent results only if the parametric
model accurately represents the true phase.

2.2. Temporal phase unwrapping

In temporal phase unwrapping the true phases are determined from
repeated wrapped phase measurements using different frequencies for
each measurement. Under the assumption of temporal invariance one
then obtains a system of equations of the form given by Eq. (1). Such
system of simultaneous equations may be solved exactly under certain
conditions. Most often the condition used limits the allowed range of
true phase values to some predetermined interval.

Approaches to temporal phase unwrapping may be classified as: (a)
hierarchical phase unwrapping [7–13]; (b) heterodyne phase unwrap-
ping [14–18]; (c) number-theoretical phase unwrapping [19,20,22,23];
and (d) optimization approaches [37–42].

The hierarchical phase unwrapping methods use a sequence of
signals with increasing frequencies whose wrapped phase is then
measured. The signals are selected so the lowest-frequency signal
(the coarsest) contains only one period per allowed phase range; it
therefore provides the true phase measurement by definition. The
remaining signals which have larger frequencies are then incrementally
unwrapped by computing the period-order number from the un-
wrapped phase of a preceding coarser signal. The main difference
between various variants described in the literature is in the selection
of frequencies [6]. The selected frequencies may form linear [7],
exponential [43], reverse exponential [10], etc. sequence. To be
efficient one wants to use the shortest possible frequency sequence
which allows reliable measurements regarding noise and application
constraints.

The heterodyne phase unwrapping uses signals of similar wave-
lengths which may be virtually combined to produce a beat interference
signal. Most often only two wavelengths λ1 and λ2 are used [14–16].
For two-wavelength approach if the condition λ λ λ< < 21 2 1 is fulfilled
then the phase may be unwrapped by analyzing the virtual beat signal
at the wavelength λ λ−2 1. The true phase of a smaller wavelength signal
is recoverable in πλ λ[0, 2 / 〉eq 1 range, where λ λ λ λ λ= /( − )eq 1 2 2 1 . Extension
to more than two wavelengths is given in [17,18].

The number-theoretical phase unwrapping methods were first
proposed by Gushov and Solodkin [19]. They are based on the
divisibility properties of integers and use the Chinese-remainder
theorem to solve a system of congruence equations of the form
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(2)

i = 1,…,n. The number-theoretical phase-unwrapping requires that the
used wavelengths λi are pairwise co-prime and that the range of the
true phase is equal-to or smaller-than the least common multiple of
wavelengths. The method is extended to use a look-up table for speed
in [20]. Improvements which address the noise-sensitivity of the
method are proposed in [20,22,23].

In the optimization approaches phase unwrapping is considered as
an optimization problem. There are two approaches: the method of
excess fractions [37–41] and L1-minimization [42]. The method of
excess fractions defines a residual error in terms of excess fractions.
The phase is unwrapped by finding integer period-order numbers
which minimize the residual error in the least-squares sense. The L1-
minimization approach selects integer period-order numbers which
minimize the absolute phase difference.

For more details about temporal phase unwrapping methods we
refer the reader to a review by Zuo et al. [6].

3. Phase unwrapping using orthographic projection

In temporal phase unwrapping more than one wavelength (or
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