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A B S T R A C T

A new method to calibrate a trinocular vision sensor is proposed and two main tasks are finished in this paper,
i.e. to determine the transformation matrix between each two cameras and the trifocal tensor of the trinocular
vision sensor. A flexible sphere target with several spherical circles is designed. As the isotropy of a sphere,
trifocal tensor of the three cameras can be determined exactly from the feature on the sphere target. Then the
fundamental matrix between each two cameras can be obtained. Easily, compatible rotation matrix and
translation matrix can be deduced base on the singular value decomposition of the fundamental matrix. In our
proposed calibration method, image points are not requested one-to-one correspondence. When image points
locates in the same feature are obtained, the transformation matrix between each two cameras with the trifocal
tensor of trinocular vision sensor can be determined. Experiment results show that the proposed calibration
method can obtain precise results, including measurement and matching results. The root mean square error of
distance is 0.026 mm with regard to the view field of about 200×200 mm and the feature matching of three
images is strict. As a sphere projection is not concerned with its orientation, the calibration method is robust
and with an easy operation. Moreover, our calibration method also provides a new approach to obtain the
trifocal tensor.

1. Introduction

In multi-camera vision system, including stereo vision system, the
relationship of cameras is fixed. Therefore, determining the transfor-
mation matrix (including the translation matrix and the rotation
matrix) between each two cameras is significant. Meanwhile, another
task is to determine the multi-focal tensor of multi-camera vision
sensor, which is essential to feature matching. The method to finish
these two tasks is named as calibration.

For stereo vision system, calibration methods are various, such as
planar target-based method, 1-D target-based method, etc. In the
planar target-based method [1–3], different features on the planar
target are utilized, e.g. centers of circles, corners, crosspoints, parallel
lines and so on. Anyway, the relationships of these features are known
exactly. When images of these features are captured by the two
cameras, the coordinates (or expressions) under each camera coordi-
nate system can be deduced from the camera model and the constraints
of features. Once the corresponding features are confirmed, the
relationship between the two cameras can be determined. In the 1-D
target-based calibration method [4,5], the essential matrix is calculated
from the corresponding feature points. When singular value decom-
position is conducted to the essential matrix, the rotation matrix and

the translation matrix, which needs a factor, can be deduced. As the
relationship between two feature points is known, the factor can be
confirmed easily.

The sphere target is also widely used to calibrate the stereo vision
system. In [6,7], Agrawal and Zhang calibrate the intrinsic parameters
of a camera based on the projection of the sphere target and the
obtained dual image of the absolute conic. Meanwhile, the relationship
between two cameras can be deduced from the 3D points cloud
registration method. However, when there are little feature points,
calibration results will be with more noise. In [8], two calibration
methods are proposed to finish the calibration task. One is using sphere
centers and points of tangency to obtain the fundamental matrix, the
other is using the homography matrix and epipoles to determine
fundamental matrix. In these sphere-based calibration methods men-
tioned above, the target should be placed in many different positions to
obtain enough feature points, meanwhile, a mass of calculation is
inevitable.

For multi-camera vision system, which consists of more than two
cameras, the relationship of cameras is also fixed. Normally, the
calibration method for stereo vision system is valid when each two
cameras are treated as a stereo vision system. However, as is known,
the relationship between two cameras (or two image plane) can be
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represented by fundamental matrix. Similarly, the relationship of
cameras is expressed by multi-focal tensor. In trinocular vision sensor,
the tensor is trifocal tensor. When each two cameras are calibrated by
the method for stereo vision system, the calibration result cannot
satisfy the constraint of trifocal tensor as it may be local optimum. In
addition, the normal calibration method often meets the problem of
self-occlusion as the different shooting angle of each camera. In this
case, a new approach to calibrate the trinocular vision sensor needs to
be proposed.

In this paper, a new calibration method for trinocular vision sensor
is presented. A sphere target with several spherical circles is utilized to
determine the trifocal tensor. When the trifocal tensor is determined,
the fundamental matrix between each two cameras can be obtained. In
this case, the rotation matrix and the translation matrix with a scale
factor can deduced from the singular value decomposition of the
fundamental matrix. Then the scale factor is determined by the known
spherical circle. In our method, the calibration result is precise and the
problem of self-occlusion is evitable as the isotropy of a sphere.

2. Determination of trifocal tensor

On the sphere target, there are several spherical circles. Therefore,
the features include the visible outline of the sphere target and the
spherical circles. In this section, we will discuss the relationship
between the trifocal tensor and these features.

2.1. Outline of the sphere

The projection of a sphere on the image plane is an ellipse, which
can be expressed as a matrix form [6]:
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where u v( , , 1)Tis the homogeneous coordinate of the projective point
on the image plane and a, b, c, d, e, f are the parameters of the elliptical
expression.

In Fig. 1, O-XYZ is the Camera Coordinate System (CCS) while o-xy
is the Image Coordinate System (ICS). Under the CCS, the projection
center of the camera is at the origin and the optical axis points in the
positive Z direction. Supposing a spatial point P is projected onto the
plane with Z=f0, referred to as the image plane under the CCS, where f0
is the effective focal length (EFL). Supposing p x y= ( , , 1)T is the
projection of P X Y Z= ( , , )T on the image plane. Under the ideal
pinhole imaging model, the undistorted model of the camera, P, p
and the projection center O are collinear. The fact can be expressed by
the following equation:
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Practically, the radial distortion and the tangential distortion of the
lens are inevitable. When considering the radial distortion, we have the
following equations:
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where r x y= +2 2 2, x y( , )Tis the distorted image coordinate, and x y( , )Tis
the idealized one, k1, k2 are the radial distortion coefficients of the lens.

According to Eqs. (1) and (2), we obtain the matrix representation
of the right-circular cone under CCS as:

X Y Z Q X Y Z[ ] [ ] = 0,T (4)

where the matrix Q is defined as [7]:
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and the related definitions are show as follow:

A af B bf C cf D df E ef F f= , = , = , = , = , =0
2

0
2

0
2

0 0 (6)

Define the coordinate of the sphere center under the CCS is
X Y Z( , , )0 0 0

T, the coordinate of its corresponding image point is
u v( , , 1)0 0

T, the relationship according to Eq. (2) is
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where K is the intrinsic parameter matrix of the camera. So the
projection of the sphere center and the outline of the sphere can be
deduced from Eqs. (5) and (7):
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the matrix K in Eq. (8) is defined the same as in Eq. (7), λ and λ′ are
scale factors as they satisfies the following equation:
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whereλ1, λ2 and λ3 are the eigenvalues of matrix Q, λ1 and λ2 must have
the same sign while λ3 must have the different one. As Q is a spherical
matrix, we define λ λ λ= =r 1 2. e e e[ , , ]x y z3 3 3

T is the eigenvector corre-
sponding to λ3 (If e < 0z3 , the eigenvector should be multiplied by scale
factor −1) and R is the radius of the sphere.

In trinocular vision sensor, the relationship of these corresponding
image points P according to trifocal tensor is [8]:
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where T is the trifocal tensor,
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the indices repeated in the contravariant and covariant positions imply
summation over the range (1,2,3) of the index. According to Eqs. (8)
and (10), the relationship of the three projections of the sphere outline
on the three image planes can be expressed as:
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Fig. 1. The projection of a sphere under the camera coordinate system.
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