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a b s t r a c t

Fringe patterns are often produced from optical metrology. It is important yet challenging to reduce noise
and remove a complicated background in a fringe pattern, for which empirical mode decomposition
based methods have been proven useful. However, the mode-mixing problem and the difficulty in au-
tomatic mode classification limit the application of these methods. In this paper, a newly developed
method named regenerated phase-shifted sinusoids assisted empirical mode decomposition is in-
troduced to decompose a fringe pattern, and subsequently, a new noise-signal-background classification
strategy is proposed. The former avoids the mode-mixing problem appearing during the decomposition,
while the latter adaptively classifies the decomposition results to remove the noise and background. The
proposed method is testified by both simulation and real experiments, which shows effective and robust
for fringe pattern analysis under different noise, fringe modulation, and defects.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A fringe pattern from optical metrology is usually expressed as

ω ϕ( ) = ( ) + ( ) [ + ( )] + ( ) ( )I x y A x y B x y x x y n x y, , , cos , , , 1

where A(x, y) and B(x, y) are the background and amplitude in-
tensity, respectively;ω denotes the spatial frequency; ϕ(x, y) is the
phase distribution; and n(x, y) is random noise. Normally the main
purpose of fringe analysis is to retrieve ϕ(x, y). It is thus necessary
to remove the irrelevant terms A(x, y) and n(x, y) in order to en-
hance the core part of the fringe pattern, B(x, y)cos[ωxþϕ(x, y)],
which is called a phase-modulated (PM) signal.

In the Fourier transform profilometry (FTP), when the phase is
simple, the PM signal is band limited in the Fourier domain and
can be easily separated from other parts if a high carrier frequency
is provided [1,2]. However, when the phase is more complicated, a
large error will appear because the spectrum of the PM signal is
mixed with the spectra of other parts. In addition to this limita-
tion, the Heisenberg's uncertainty principle also limits almost all
the spectral analysis methods such as the windowed FTP [3,4], the
ridge of wavelet transform (WT) [5] or the S-transform [6,7].

Empirical mode decomposition (EMD) based methods provide
another approach for fringe pattern analysis. EMD is a data-driven
technique that aims to decompose a non-stationary signal into a
series of mono components (named as intrinsic mode functions,
IMFs) [8]. It has been used to suppress noise [9] and eliminate the
background to suppress the zero spectrum [10,11] in FTP. Fur-
thermore, EMD combined with Hilbert transform (HT) is increas-
ingly used for phase extraction in recent years, where EMD ex-
tracts the PM signal and HT constructs an analytic signal of the PM
signal for phase retrieval [12–15]. A signal can be decomposed by
EMD as follows,
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where k is the index of an IMF; K is the total number of IMFs; r(x)
is the residue. As the IMFs range from high frequency to low fre-
quency, they are classified into three groups as follows,
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where k1 and k2 are two critical indexes dividing all the IMFs into
three groups; the first group ∑ ( )< xIMFk k k1

represents the noise, the

second group ∑ ( )≤ ≤ xIMFk k k k1 2
is the desired PM signal and the last

group means the background. The classification result directly
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influences the accuracy of the phase retrieval. There are two
technical challenges in getting Eq. (3). First, in EMD results, the so-
called mode-mixing problem (MMP) often occurs, which gives an
IMF uncertain physical meaning. Second, even without the MMP, it
is difficult to correctly classify the three groups, i.e., k1 and k2 of Eq.
(3) are not easy to be determined.

For a fringe pattern, the MMP is usually caused by uneven
distribution of noise, including either high-frequency noise or low-
frequency noise. Additionally, if the MMP exists in the high-fre-
quency IMFs, it will spread to low-frequency IMFs. In [13], soft
thresholding is used to eliminate the mixed PM signal existing in
IMF1. Considering the possible MMP in any IMFs, in [14,15], local
parts of each bidimensional IMF (BIMF) are picked out according
to local amplitudes and then combined into the final result
through a weighted mean. The methods show good results re-
gardless of solving the MMP, but they still encounter challenges for
various applications if the noise or background has the similar
amplitude with the PM signals. Ensemble EMD (EEMD) [16] has
been thought as the mainstream technique to solve the MMP. It
processes an ensemble of the white-noise added signals and takes
the average of all results as the end result. EEMD has been ex-
panded to bidimensional EEMD [17] and multivariate EEMD
[18,19], and further improved into Complete EEMD (CEEMD) to
reduce the residue noise or spurious modes [20,21] in these years.
All ensemble-based methods suffer from long computing time to
process a big ensemble of data. In order to improve the efficiency,
we have conducted some studies of adding a designed “noise” to
achieve the results of EEMD [23,23]. However, these methods fo-
cus on the MMP in the high-frequency IMFs caused by noise, but
ignore the MMP in other scales.

As for the classification of noise and background, k1¼2 and
k2¼K are often set, postulating that only IMF1 is the noise and only
the r(x) is the background [12,24]. To cope with more complicated
situations, in [25], the standard deviation of ∑ ( )α

= xIMFk k1 is com-
puted as s(α), and k1¼α�1 is set when s(α) becomes dramati-
cally larger than s(α�1), where a threshold is needed. In [17], the
power of autocorrelation parameters for each BIMF is computed
and then the abrupt change of the computed values is found to set
k1. As for background removal, k2 is often chosen manually [10,26].
In [27], the marginal entropies of BIMFs are computed to obtain
mutual information, in order to evaluate the correlation between
IMFs, and then the mutual information is used to determine k2
[28]. In [13], the mean of an IMF is tested whether the IMF belongs
to the background through a threshold, providing that an IMF
belonging to the background has a larger mean. Unfortunately, the
MMP of the low-frequency IMFs always leads to unpredictable
cases, thus, only the correlation between IMFs or the characteristic
analysis of an IMF itself cannot work robustly to correctly de-
termine k2. In [29], the method realizes k1¼k2¼K¼1 cleverly and
presents a good result for background reconstruction based on the
condition that the fringe pattern is clean. In another work [30], the
time average subtraction method is used to eliminate the back-
ground, but this is unavailable for a single frame of fringe pattern
analysis. We also developed some criteria to set k2 based on the
overall changes of frequencies and amplitudes between IMFs
[22,23], but more robust measures are needed in practice.

In this paper, a novel regenerated phase-shifted sinusoids as-
sisted EMD (RPSEMD) method is introduced to solve the MMP of
EMD, and then a new strategy is proposed for mode classification
to reduce noise and remove the background of a fringe pattern.
The RPSEMD generates different sinusoids adaptively in different
stages of decomposition to solve the MMP in all IMFs. The new
noise-signal-background classification strategy determines k1 and
k2 correctly for the resulted mono-component IMFs. Both the
RPSEMD method and the classification strategy are automatic. The

proposed method is robust to cope with a variety of
complex situations for fringe pattern analysis in optical metrology.
Experiments also show high accuracy and efficiency of the pro-
posed method.

2. The RPSEMD algorithm used for analyzing fringe patterns

2.1. The mode-mixing problem

EMD is a data-driven method that aims to iteratively decom-
pose a signal into a series of mono-component IMFs. We call each
iteration, namely, the process producing an IMF, as a stage of de-
composition. So IMFk(t) in Eq. (2) is the product after the kth stage
of decomposition.

Each stage of EMD starts from detecting the extremum points
of the tested signal [8]. Based on the detected extrema, IMFk(t) is
determined. We define an mono component of a signal as an in-
trinsic mode (IM) represented as IM(t)¼a(t)cos[2πf(t)], where a(t)
and f(t) mean the instantaneous amplitude and instantaneous
frequency respectively [31]. Then the obtained result in the kth
stage can be written as π( ) = ∑ ( ) [ ( ) ]=t a t f t tIMF cos 2k j

J
j j1 , where J is

the number of IMs. If the detected extrema belong to a single IM,
namely, J¼1, then IMFk(t) is an ideal result. On the contrary, if the
detected extrema belong to multiple IMs, namely, J41, the de-
composed IMF contains more than one IM, and the MMP occurs.

2.2. Solutions to the MMP and the RPSEMD algorithm

EEMD [16] is a powerful method for solving the MMP, which
can adjust the extrema of each scale in a signal by adding a large
series of white noise because the white noise has scales populated
throughout the time-frequency space. However, the ensemble size
of white noise is required to be very large to make sure the added
white noise is finally canceled out by average.

Inspired by EEMD, we have proposed to add a designed sinu-
soid as “a noise” to the signal of a fringe pattern [22,23]. The
methods successfully solve the MMP in high-frequency IMFs but
they ignore the possible MMP in low-frequency IMFs. Moreover, in
[23], we design the amplitude and frequency of the added “noise”
only through a simple average method. Thus an advanced tech-
nique is needed to robustly cope with signals with high
complexity.

As a response to the above requirement, we developed the
RPSEMD algorithm recently [32]. Within each stage of decom-
position, a sinusoid is designed and added to make the extrema
uniformly distributed in order to avoid the MMP. The procedure of
RPSEMD is summarized as follows:

1. Apply EMD to a signal I(t) to get initial IMFs and design a si-
nusoid s(t| a, f, θp) where a, f, and θp are amplitude, frequency
and an initial phase of the sinusoid, respectively. The amplitude
and frequency are determined according to the initial IMFs,
while the initial phase is 0;

2. Apply EMD to I(t)þs(t| a, f, θp) only to get a temporary IMF1(t);
3. Repeat Step 2 with θp increased by 2π/P for another (P�1)

times and get the final first IMF as ⎡⎣ ⎤⎦( ) = ∑ ( )=c t IMF t P/p
P

1 1 1 ;

4. Remove c1(t) from I(t), i.e., I(t)’I(t)-c1(t), then repeat Steps 1-3
on the residue I(t) to get all other IMFs. The final residue is
denoted as r(t).

The result of RPSEMD can also be represented by Eq. (2), but
this time, the MMP is largely resolved. Details of each step can be
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