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a  b  s  t  r  a  c  t

A  wide-spread  lumped  parameter  model  describing  the  electrostatic  pressure  present  in dielectric  elas-
tomer actuators  is  presented  by Pelrine  et al. in  1998.  In  Pelrine’s  model,  the electrostatic  pressure  is
affected  by  the relative  permittivity  of the  material,  also  known  as dielectric  constant.  However,  many
researchers  found  that  the  dielectric  constant  of dielectric  elastomers  is not  constant  at  all,  but  decreas-
ing with  increasing  pre-stretch  of  the  material.  This  holds  especially  for acrylic  materials  such  as  VHB
4910  from  3M.  From  a physical  point  of  view,  polarisation  within  the  dielectric  material  is  responsible
for  the material’s  permittivity  and  in general,  polarisation  is  deformation  dependent.  In  this  work,  an
alternative  modelling  approach  is  presented,  explaining  the  stretch  dependent  electrostatic  pressure.  It
is shown  that  Pelrine  implicitly  assumes  that  the polarisation  of  the material  is linear  in the  imposed
electric  field  strength.  If this  assumption  is modified  to  allow  for a more  general  polarisation  field  that
is  based  on  invariants  of the  electromechanically  coupled  problem,  a new  polarisation  based  lumped
parameter  model  is  obtained.  It  is  shown  that  this  new  model  fits experimental  data  found  in  literature
quite  well.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Dielectric elastomer actuators (DEAs) are composed of an elastic
dielectric material that is sandwiched between two compliant elec-
trodes, as illustrated in Fig. 1. When the electrodes are charged by
applying an electric potential, charges with opposite signs attract
each other, leading to a contractive force also known as electrostatic
pressure [1]. When several DEA cells are stacked on top of each
other, resulting in a pile-up configuration, the electrostatic pres-
sure provides macroscopically useful displacements [2]. Stacked
DEAs are also referred to as artificial muscles, because they bear
analogy to the behaviour of human muscles in terms of contracting
in length direction when stimulated.

The idea of using artificial muscles as sophisticated actuators
for humanoid robots offers a broad variety of potential applica-
tions [3]. The elastic structure acts as an energy storage and allows
for dynamic motion [4,5] and safe human interaction. Compared
to commonly used electrical drives, no gearbox is necessary and
the operation is noiseless [6]. Due to the high efficiency, artificial
muscles allow to build autarkic systems in contrast to pneumatic
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or hydraulic systems. However, the use of elastic actuators is also
accompanied by new control challenges. Advanced control strate-
gies need to avoid unwanted oscillations, bring the system as
quickly as possible into its steady state and follow prescribed tra-
jectories as close as possible.

Other applications of dielectric elastomers include bending
membranes [7,8] or balloon and tubular shaped actuators [9–12]. A
multilayer bending actuator equipped with so called chucking elec-
trodes allows for variable stiffness as shown in [13]. More recent
works consider the high frequency operation of spring loaded cir-
cular dielectric elastomer membranes [14] that can also be utilised
as micropumps [15,16].

The behaviour of artificial muscles can generally be described
by considering coupling forces between the applied electric field
(whose distribution has to fulfil the Maxwell equations for elec-
trostatics) and the deformation gradient (that is characterised by
the mechanical momentum balance) as shown by Dorfmann et al.
in 2005 [17]. In 2007, Vu et al. [18] solve the equations proposed
by Dorfmann for arbitrary geometries in the static case, numeri-
cally simulated using the finite element method. The finite element
framework is used to solve optimisation problems with dielectric
film inclusions in [19]. The static formulation of Vu is extended
by inertia terms that allow for dynamic motion and structure pre-
serving time integration by Schlögl et al. in 2016 [20]. Even though
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Fig. 1. Stacked dielectric elastomer actuator with functional principle. When a voltage is applied, attracting charges lead to a contractive force.

these models provide a powerful tool to solve electromechanically
coupled and dynamic problems of arbitrary geometry, the com-
putational cost is quite demanding. To find solutions for complex
control problems where a multibody system is actuated by several
muscles at the same time as in [21], it is necessary to make use of
lumped parameter models that reduce the computational cost.

A wide-spread lumped parameter model describing the electro-
static pressure p is presented by Pelrine et al. in 1998 [1] and given
as

p = ε0εrE
2, (1)

where ε0 and εr are the vacuum and relative permittivity, respec-
tively, and E is the electric field. The fact that the electrostatic
pressure present in a DEA is twice the pressure in a rigid plate
capacitor is explained by the repelling of like charges within the
electrodes. Because the elastomer is incompressible, the electrode
surface area increases when the actuator contracts, releasing addi-
tional electric energy. In 2007, Wissler et al. [22] confirm this
presumption by evaluating two-dimensional finite element sim-
ulations, finding electrostatic forces in ‘in-plane’ and ‘out-of-plane’
direction.

The electrostatic pressure given by Eq. (1) is affected by the
relative permittivity εr of the material, also known as dielec-
tric constant. As increasing the electric field strength E to gain a
large electrostatic pressure is limited by manufacturing constraints
[23,24] as well as dielectric strength and instabilities [25,26], the
dielectric constant is of great importance. Remarkably enough,
many researchers found that the dielectric constant εr is not con-
stant at all, but decreasing with increasing pre-stretch of the
material [27–30,22]. From a physical point of view, polarisation
within the dielectric material is responsible for the materials per-
mittivity and in general, polarisation is deformation dependent
[31].

In this work, an alternative modelling approach is presented,
replacing Eq. (1) and explaining the stretch dependent actuation
pressure. In Section 2, the commonly used models including their
derivations and assumptions are reviewed. Based on these find-
ings, in Section 3 the assumptions are modified to allow for a more
general polarisation field, leading to a polarisation dependent elec-
trostatic pressure. Moreover, a general constitutive polarisation
model that is based on invariants of the electromechanically cou-
pled stress tensor is introduced. In Section 4, the new model is
compared to measurement data found in literature, based on the
VHB 4910 acrylic tape from 3M.

2. Common modelling approach and inconsistencies

This section discusses the various assumptions that are implic-
itly and explicitly made in commonly used models and compares
them to the actual requirements of DEAs. First, the consistency
between three-dimensional Maxwell stress models and one-
dimensional lumped parameter models is shown. Then, a possible

derivation of Eq. (1), based on the principle of virtual work, is pre-
sented in detail to provide a basis for the following modifications.

2.1. Maxwell stress, electrostriction and electrostatic pressure

The Maxwell stress tensor �elec describes the three-dimensional
stress state within a dielectric material that is caused by the appli-
cation of an electric field. Yamwong et al. [32] give this Maxwell
stress as

�elec = ε0

(
2εr − a1

2

)
E ⊗ E − ε0E · E

(
εr + a2

2

)
1, (2)

where E is the spatial electric field vector, 1 is the identity matrix
and a1/2 are electrostrictive components. Electrostriction relates
electrical and mechanical stored energy and hence is the reason
for electromechanical coupling. Even though the main part of the
cited work from Yamwong is about polar rubber (which is based
on a different functional principle compared to DEAs), this basic
equation is generally valid.

The electrostrictive components a1/2 in Eq. (2) arise from a
few assumptions that are discussed in [31]. If the relationship
between the electric displacement field and the electric field vec-
tor is linear and the material is homogeneous, the polarisation
can be replaced by a tensor valued dielectric permeability. If it is
further assumed that the displacement vector is small, neglecting
higher order terms, the two  electrostrictive coefficients of Eq. (2)
a1/2 are obtained. Whereas some works consider the electrostric-
tive coefficients to be of importance [33,34], in many cases it is
further (implicitly) assumed that the material is isotropic, result-
ing in only the scalar dielectric permittivity ε = ε0εr introduced in
Eq. (1), without any further coefficients [1,29,30,35].

If Eq. (2) is evaluated without electrostrictive components

(a1/2 = 0) and for a unidirectional electric field E =
(

0 0 E
)T

act-
ing in z-direction only, the Maxwell stress becomes

�elec =
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⎞
⎟⎟⎟⎟⎠ . (3)

Because the DEA material is incompressible, its deformation state
is independent of a superimposed hydrostatic pressure state. In
other words, the atmospheric pressure has no effect on the material
behaviour [36]. The stress tensor

�̂ = �elec + p̂ 1, (4)

with arbitrary pressure p̂ leads to the same deformation state as
�elec alone. If p̂ is chosen such that p̂ = 1

2ε0εrE2, Eq. (4) becomes

�̂ =

⎛
⎝ 0 0 0

0 0 0

0 0 ε0εrE2

⎞
⎠ . (5)
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