Accepted Manuscript Title: Influence of magnetic fields on the bias stability of atomic gyroscope operated in spin-exchange relaxation-free regime Author: Rujie Li Wei Quan Wenfeng Fan Li Xing Jiancheng Fang PII: S0924-4247(17)30550-2 DOI: http://dx.doi.org/doi:10.1016/j.sna.2017.09.023 Reference: SNA 10331 To appear in: Sensors and Actuators A Received date: 30-3-2017 Revised date: 11-9-2017 Accepted date: 11-9-2017 Please cite this article as: Rujie Li, Wei Quan, Wenfeng Fan, Li Xing, Jiancheng Fang, Influence of magnetic fields on the bias stability of atomic gyroscope operated in spin-exchange relaxation-free regime, <![CDATA[Sensors & Actuators: A. Physical]]> (2017), http://dx.doi.org/10.1016/j.sna.2017.09.023 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ## ACCEPTED MANUSCRIPT Influence of magnetic fields on the bias stability of atomic gyroscope operated in spin-exchange relaxation-free regime Rujie Li^{a,b,*}, Wei Quan^{a,b,**}, Wenfeng Fan^{a,b}, Li Xing^{a,b}, Jiancheng Fang^{a,b} ^aSchool of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing 100191, China #### Abstract For the atomic gyroscope (AG) operated in spin-exchange relaxation-free (SERF) regime, the sensitivity to external magnetic fields has been suppressed while the ability to sense inertial rotations has been kept. Here, a theoretical relationship between the magnetic fields and the AG response is given, and the influence of field fluctuations on the systematic stability is also shown. The spin-exchange rate of the electron spins R_{se}^{en} and the relaxation rate of the nuclear spins R_{tot}^{n} aggravate the influence of the field component B_x . Experimental results indicate that the contributions of long-term fluctuations in the fields, approximately 2.4 pT/h for B_x and 0.9 pT/h for B_y , to the bias stability are 2.19×10^{-2} deg/h and 5.29×10^{-4} deg/h. This work is not only valuable for understanding the field-suppression effect in SERF AG, but also provides a useful tool for identifying the influence of fields on the systematic stability. Keywords: Atomic gyroscopes, Inertial sensors, Magnetic-field suppression, Magnetic-field stability ^bScience and Technology on Inertial Laboratory, Beihang University, Beijing 100191, China ^{*}First Corresponding Author. Tel.: +86~010~82338953. ^{**}Second Corresponding Author. Tel.: +86 010 82339713. Email addresses: lirujie@buaa.edu.cn (Rujie Li), quanwei@buaa.edu.cn (Wei Quan) ### Download English Version: # https://daneshyari.com/en/article/5008170 Download Persian Version: https://daneshyari.com/article/5008170 <u>Daneshyari.com</u>