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Abstract: Consensus of multi-agent systems under random networks has attracted considerable attention. In previous literatures,
it is often assumed that the agents communicate throughMarkov switching networks. However, in some engineering applications,
the available network information is the expectation of the Laplacian matrix and the time-varying networks are not proper to
be regarded as Markov switching. To solve this problem, we develop a method to cope with the mean square consensus of
multi-agent systems. Based on the properties of expectation of Laplacian matrix, we present the design of relevant parameters
and establish some conditions to guarantee the mean square consensus. Numerical simulations are also given to validate our
approach.
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1 Introduction

As known to all, due to wide application in many fields,

such as social sciences, physics, biology, and engineering

[1], the consensus of multi-agent systems (MASs) is a cen-

tral problem of the study of complex networks.

Because of the potential existence of packet dropouts,

external disturbances, channel fading, task execution alter-

ation, the communication networks among the agents would

be randomly switching topologies [2]. Most of the literatures

focused on the Markov switching networks. Just name a few

examples. Luan et al. considered the finite-time consen-

sus of multi-agent systems (MASs) with stochastic Markov

jump topologies and external disturbances [3]. You et al. an-
alyzed the mean square consensus of MASs under Markov

switching networks [4]. Wang and Zhang considered the dis-

tributed output feedback control of of Markov jump multi-

agent systems [5]. Savino studied the data-sampled control

of MASs with uncertain transition rate [6].

Another kind of random network is with the common

assumption that we know the expected value of Laplacian

matrix [7–10]. An important application is the link failure

analysis of wireless sensor networks. In 2009, Zhou and

Wang analyzed the convergence speed in distributed consen-

sus over random switching network by introducing per-step

convergence factor [7]. In 2010, Pereira et al. considered
the mean square consensus of wireless sensor networks with

random asymmetric topologies [8]. In 2011, Abaid and Por-

firi gave the detailed value of asymptotic mean square con-

vergence factor of numerosity-constrained random networks

[9]. Their results were extended to leader-follower consen-

sus over numerosity-constrained random networks in [10].

The above literatures mainly focused on the consensus of

MASs with discrete-time dynamics. In addition, the random

network links are assumed to be with independent and iden-

tical distribution. To our knowledge, there are few litera-

tures investigating the consensus of continuous-time MASs,
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where the distribution of links are not independent and iden-

tical. In this paper, we consider the design of consensus pro-

tocols under a more general random distribution network.

Conditions are established to ensure mean square consensus

according to the time-varying expectation of Laplacian ma-

trix.

The rest of this paper is organized as following. In Sec. 2,

the problem description is given. Main results are given in

3. In Sec. 4, simulations are proposed to verify the effective-

ness of our design. Sec. 5 concludes our paper .

2 Problem Statement

A directed graph is denoted as G = {V, E}, where V =
{1, 2, · · · , N} is the set of nodes and E ⊆ V × V is the set
of edges. The adjacency matrix G of the graph G is defined
as G = [gij ]N×N , where gji = 1 if and only if (i, j) ∈ E .
In this paper, we consider simple graphs, i.e., (i, i) /∈ E and
thus gii = 0. A graph is said to be undirected if (i, j) ∈ E
implies that (j, i) ∈ E for every pair of nodes i and j. A
path from node i1 to node il is a sequence of ordered edges
satisfying (ij , ij+1) ∈ E , j = 1, 2, · · · , l − 1. If there is
one node in the graph such that there exists a directed path

from this node to every other node, then the graph contains

a spanning tree. The Lapacian L is defined as L = D − G,
where D = diag{d1, d2, · · · , dN}, di =

∑N
j=1 gij .

The dynamics of the MASs takes form of

ẋi = Axi +Bui, (1)

xi ∈ Rn is the system state. The controllers are designed as

ui = K

N∑
j=1

aij(t)(xi − xj), (2)

The agents communicated through a randomly time-varying

network G(t). With this controller, we aims to achieve mean
square consensus of MASs (1), which is defined below.

Definition 1 For any xi(0) ∈ R
n, the MASs (1) is said to

achieve mean square consensus, if E‖xi − xj‖2 → 0 as
t→∞, i, j = 1, 2, · · · , N .
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To establish our main results, some assumptions are listed

below.

Assumption 1 The sample space of the random variable L
is countable set, i.e., there exists a s > 0, such that L =
{L1,L2, · · · ,Ls}, where s can be infinite. There exists a
function θi(·) > 0 and a constant di > 0, such that

P (L(t+Δt) = Li) = P (L(t) = Li) + θi(Δt), (3)

where limΔt→0 |θi(Δt)|/(Δt) ≤ di.
Assumption 2 The pair (A,B) is stabilizable, and there ex-
ists a positive definite matrix P , such that

PA+ATP +
s∑

j=1

djP − PBBTP = −Q. (4)

Lemma 1 ([11]) For a directed network, all the eigenvalues
ofL have nonnegative real parts. Zero is a simple eigenvalue
of L if and only if the corresponding graph G has a spanning
tree.

Lemma 2 Consider the matrixC = IN⊗A+B⊗In, where
A ∈ R

N×N , B ∈ R
n×n. Its eigenvalues set is {λ(C) =

λ(A) + λ(B)}.

Proof: Suppose that ρ ∈ λ(A) and σ ∈ λ(B). Then, there
exist vectors x ∈ Rn and y ∈ RN , such that

Ax = ρx, By = σy. (5)

Thus, we arrive at

(IN ⊗A+B ⊗ In)(y ⊗ x) = (ρ+ σ)y ⊗ x. (6)

This completes the proof. �
The definition of average dwell time is given below.

Definition 2 ([12]) For arbitrary T2 > T1 > 0, let
Nσ(T1, T2) denotes the switch number on time interval
(T1, T2). If

Nσ(T1, T2) ≤ N0 + T2 − T1
τa

(7)

holds for any given N0 ≥ 0, τa > 0, then the constant τa is
called average dwell time. In general, we set N0 = 0.

3 Main Results

In this section, we will investigate the consensus of MASs

under the random time-varying network. To begin with, an

important proposition will be introduced.

Proposition 1 Consider the randomly time-varying system

ẋ = A(t)x(t). (8)

Suppose thatA(t) ∈ {A1, A2, · · · , As}. There exists a func-
tion θi(·) > 0 and a constant di < 0, such that

P (A(t+Δt) = Li) ≤ P (A(t) = Ai) + θi(Δt), (9)

where limΔt→0 |θi(Δt)|/(Δt) ≤ di, di > 0 is a constant. If
the following time-varying system

ẏ = (Ā(t) +
s∑

j=1

dj
2
In)y, (10)

is asymptotically stable, where Ā(t) = E(A(t)), then, sys-
tem (8) is asymptotically stable in sense of mean square.

Proof: Define

Xi(t) = E(x(t)x
T(t)φi(t)), (11)

where

φi(t) =

{
1, if A(t) = Ai,

0, otherwise.

Since

E(xT(t)x(t)) = tr(E(x(t)xT(t))) = tr(
N∑
i=1

E(x(t)xT(t)φi(t))),

the stability of Xi(t), i = 1, 2, · · · , s, implies the conver-
gence of E(xT(t)x(t)). From the definition of Xi(t), we
have

Xi(t+Δt)

=x(t+Δt)xT(t+Δt)P (A(t+Δt) = Ai)

=x(t+Δt)xT(t+Δt)(P (A(t) = Ai) + θi(Δt))

=
s∑

j=1

Φj(t+Δt, t)x(t)x
T(t)ΦT

j(t+Δt, t)P (A(t) = Aj)

× (P (A(t) = Ai) + θi(Δt)).

Φj(t+Δt, t) is the state transition matrix of system (8) from
the time t to t + Δt, with the assumption that A(t) = Aj .

Thus,

Φj(t+Δt, t) = I +AjΔt+ o(Δt).

It arrives at

Xi(t+Δt)

=
s∑

j=1

(I +AjΔt)x(t)x
T(t)(I +AjΔt)

TP (A(t) = Aj)

× (P (A(t) = Ai) + θi(Δt)) + o(Δt)

=Xi(t) + (E(A(t))Xi(t) +X
T

i (t)E(A(t)))Δt

+
s∑

j=1

Xj(t)θi(Δt) + o(Δt).

Let Ξi(t) = Vec(Xi(t)). It is clear that Ξi(t) → 0 implies
that Xi(t)→ 0, t→∞. Thus,

Ξi(t+Δt) = Ξi(t) +A(t)ΞiΔt+ θi(Δt)
s∑

j=1

Ξj ,

where A(t) = In ⊗ Ā(t) + Ā(t)⊗ In. The dynamics of Ξi

takes form of

Ξ̇i = A(t)Ξi + lim
Δt→0

θi(Δt)

Δt

s∑
j=1

Ξj ≤ A(t)Ξi + di

s∑
j=1

Ξj .

Letting Ξ =
∑s

j=1 Ξj , we have

Ξ̇ ≤ (A(t) +
s∑

j=1

djIn2)Ξ, (12)

It follows from Ξ =
∑s

j=1Vec(Xj) that the convergence of
Ξ implies the stability of Xi, i = 12, · · · , s. Given system

Π̇ = (A(t) +
s∑

j=1

djIn2)Π, Π(0) = Ξ(0), (13)
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