Accepted Manuscript

Title: Enantioselective recognition of unmodified amino acids by ligand-displacement assays with *in situ* generated 1:1

Cu(II)- BINOL imidazole complex

Authors: Sathishkumar Munusamy, Vivek Panyam Muralidharan, Sathiyanarayanan Kulathu Iyer

PII: S0925-4005(17)30779-7

DOI: http://dx.doi.org/doi:10.1016/j.snb.2017.04.169

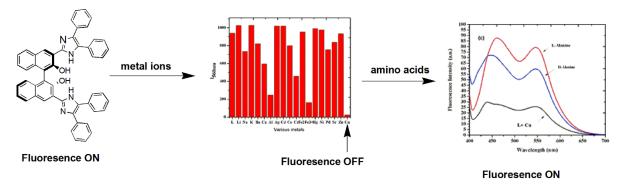
Reference: SNB 22257

To appear in: Sensors and Actuators B

Received date: 9-8-2016 Revised date: 24-4-2017 Accepted date: 26-4-2017

Please cite this article Sathishkumar Munusamy, Vivek as: Panyam Sathiyanarayanan Muralidharan, Kulathu Iyer, Enantioselective recognition of unmodified amino acids by ligand-displacement assays with in situ generated 1:1 Cu(II)- BINOL imidazole complex, Sensors and Actuators B: Chemicalhttp://dx.doi.org/10.1016/j.snb.2017.04.169

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.


ACCEPTED MANUSCRIPT

Enantioselective Recognition of Unmodified amino acids by Ligand-Displacement Assays with *In Situ* Generated 1:1 Cu(II)- BINOL Imidazole complex

SathishkumarMunusamy, VivekPanyamMuralidharan, SathiyanarayananKulathuIyer*[a]

^aChemistry Division, School of Advanced sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.

Graphical Abstract

Highlights

• BINOL based fluorescent sensors are generally composed of a fluorophore and a binding site, and are incorporated with a signaling mode for the fluorophore in response to the event at the binding sites. As BINOL has chirality into the binding site, the resulting fluorescent sensor could carry out the enantioselective recognition of chiral organic molecules. We captivated this property of BINOL and synthesized minor groove imidazole functionalized (S)-BINOL starting from (S)-BINOL. The developed sensor can serve as turn off sensor for Cu(II) with high selectivity among metal ions tested. The in situ generated Cu(II)-1 complex exhibit remarkable fluorescent chiral discrimination toward unmodified α-amino acids in protic solution via ligand displacement mechanism

Abstract

We have synthesized minor groove imidazole functionalized (S)-BINOL from (S)-BINOL. The molecule has been designed in such a way that this molecule introduces new opportunities in the field of chiral recognition and Cu(II) sensing. The developed sensor has high selectivity for Cu(II) among the metal ions tested by fluorescence turn off manner. The fluorescence chiral discrimination towards unmodified α -aminoacids has been studied for the in situ generated

Download English Version:

https://daneshyari.com/en/article/5008774

Download Persian Version:

https://daneshyari.com/article/5008774

Daneshyari.com