Accepted Manuscript

Title: A coumarin based azo-phenol ligand as efficient fluorescent "OFF-ON-OFF" chemosensor for sequential detection of Mg^{2+} and F⁻: Application in live cell imaging and as molecular logic gate

Authors: Saswati Gharami, Deblina Sarkar, Paramita Ghosh, Samik Acharyya, Krishnendu Aich, Nabendu Murmu, Tapan Kumar Mondal

PII: S0925-4005(17)31167-X

DOI: http://dx.doi.org/doi:10.1016/j.snb.2017.06.148

Reference: SNB 22619

To appear in: Sensors and Actuators B

Received date: 30-12-2016 Revised date: 20-6-2017 Accepted date: 21-6-2017

Please cite this article as: Saswati Gharami, Deblina Sarkar, Paramita Ghosh, Samik Acharyya, Krishnendu Aich, Nabendu Murmu, Tapan Kumar Mondal, A coumarin based azo-phenol ligand as efficient fluorescent "OFF-ON-OFF" chemosensor for sequential detection of Mg2+ and F—: Application in live cell imaging and as molecular logic gate, Sensors and Actuators B: Chemicalhttp://dx.doi.org/10.1016/j.snb.2017.06.148

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

A coumarin based azo-phenol ligand as efficient fluorescent "OFF-ON-OFF" chemosensor for sequential detection of Mg²⁺ and F⁻: Application in live cell imaging and as molecular logic gate

Saswati Gharami,^a Deblina Sarkar,^b Paramita Ghosh,^b Samik Acharyya,^a Krishnendu Aich,^a Nabendu Murmu*^b and Tapan Kumar Mondal* ^a

^aDepartment of Chemistry, Jadavpur University, Kolkata-700032, India.

^bDepartment of Signal Transduction and Biogenis Amines (STBA), Chittaranjan National Cancer Institute, Kolkata- 700026, India.

Corresponding author: Ph: 91-033-24572970; Email: tkmondal@chemistry.jdvu.ac.in (TKM); nabendu.murmu@cnci.org.in (NM)

GRAPHICAL ABSTRACT

Coumarin based azo-phenol chemosensor for selective detection of Mg^{2+} has been synthesized and characterized. An almost 16 fold enhancement of emission intensity has been observed upon gradual addition of Mg^{2+} in DMSO:H₂O (1:5 v/v) medium and has no significant effect even in presence of other metal ions. The emission intensity of the L- Mg^{2+} complex has almost quenched on gradual addition of F^- . The limit of detections for both Mg^{2+} and F^- are in order of 10^{-8} M, hence the newly developed receptor is highly efficient in detecting Mg^{2+} and F^- in very minute levels. The chemosensor can even detect Mg^{2+} in the intracellular region of human lung cancer cells.

$$\lambda_{\text{ex}} = 470 \text{ nm}$$

CHEF 'ON'

PET 'ON'

PET 'OFF'

Weak Emission

CHEF 'ON'

PET 'OFF'

 $\lambda_{\text{em}} = 631 \text{ nm}$

Download English Version:

https://daneshyari.com/en/article/5008976

Download Persian Version:

https://daneshyari.com/article/5008976

Daneshyari.com