Contents lists available at ScienceDirect



### Sensors and Actuators B: Chemical



journal homepage: www.elsevier.com/locate/snb

# Fabrication of platinum-loaded cobalt oxide/molybdenum disulfide nanocomposite toward methane gas sensing at low temperature



Dongzhi Zhang<sup>a,\*</sup>, Hongyan Chang<sup>a</sup>, Yan'e Sun<sup>a</sup>, Chuanxing Jiang<sup>a</sup>, Yao Yao<sup>b</sup>, Yong Zhang<sup>a</sup>

<sup>a</sup> College of Information and Control Engineering, China University of Petroleum (East China), Qingdao 266580, China <sup>b</sup> College of Communication Engineering, Chengdu University of Information Technology, Chengdu 610225, China

#### ARTICLE INFO

Article history: Received 22 February 2017 Received in revised form 7 June 2017 Accepted 10 June 2017 Available online 10 June 2017

Keywords: Pt-Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub> nanocomposite Layer-by-layer self-assembly Methane gas detection Operating temperature

#### ABSTRACT

A novel methane sensor based on platinum (Pt)-loaded cobalt oxide  $(Co_3O_4)$ /molybdenum disulfide  $(MoS_2)$  nanocomposite was reported in this paper. The sensor was fabricated via layer-by-layer (LbL) self-assembly method for the first time, and was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), elemental mapping, transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). The gas sensing properties of the as-prepared Pt-Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub> composite toward methane gas was investigated under various operating temperature, and the optimal working temperature of 170 °C was determined. The Pt-Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub> sensor exhibits superior gas sensing performance toward methane as compared to the Co<sub>3</sub>O<sub>4</sub>, Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub> counterparts. The underlying gas sensing mechanism of the Pt-Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub> sensor was systematically discussed, which demonstrates that the enhanced sensing performance of the sensor is attributed to the good synergistic effect of the ternary materials, including high availability of oxygen species, active catalytic effect, and special interactions at MoS<sub>2</sub>/Co<sub>3</sub>O<sub>4</sub> heterojunction.

© 2017 Elsevier B.V. All rights reserved.

#### 1. Introduction

The monitoring and detecting of toxic and flammable gases in various fields, such as coal mine, has attracted considerable attention in the past decade. Methane (CH<sub>4</sub>), a kind of colorless but combustible gas, is the most important component of mine gas. As we all known, high concentration (>5%) of  $CH_4$  in coal mine is dangerous and may cause the explosion [1,2]. Therefore, reliable and large range concentration detection of CH<sub>4</sub> is extremely necessary. Currently, metal oxide semiconductors (MOS) such as zinc oxide (ZnO), tin oxide (SnO<sub>2</sub>), titanium dioxide (TiO<sub>2</sub>), indium oxide  $(In_2O_3)$  cobalt oxide  $(Co_3O_4)$  and tungsten trioxide  $(WO_3)$ , have been known as promising gas sensing materials owing to their distinctive performance, including nano-size, easy fabrication, low cost, as well as stable physical-chemical properties [3,4]. Among them, Co<sub>3</sub>O<sub>4</sub>, as a p-type semiconductor, has generated lots of interest for detecting various kinds of gases, such as NH<sub>3</sub> [5], NO<sub>2</sub> [6], CO [7,8], ethanol [9], toluene [10], acetone [11] and water vapor [12]. However, few literatures have reported that pure Co<sub>3</sub>O<sub>4</sub> possess

\* Corresponding author. *E-mail address:* dzzhang@upc.edu.cn (D. Zhang).

http://dx.doi.org/10.1016/j.snb.2017.06.063 0925-4005/© 2017 Elsevier B.V. All rights reserved. satisfactory performance for detecting  $CH_4$  below 200 °C [13]. With the appeal of reducing low power consumption in sensor development, it is highly worthy of enhancing the sensing performance of MOS-based sensors toward methane gas at lower temperature.

In recent years, single-layer graphene has emerged as a typically two-dimensional (2D) nanomaterial and attracted tremendous interest owing to its unique atomically thin-layered structure and excellent electrical properties [14-16]. However, its application has been limited by its inability to function as a semiconductor, which is critical for the on-off switching operations performed by electronic devices. To overcome this shortcoming, the researchers turned to another emerging 2D nanomaterial, molybdenum disulfide (MoS<sub>2</sub>). MoS<sub>2</sub> possesses a layered structure similar to graphene, has been extensively investigated as a promising candidate in various applications due to its exceptional properties [17-20]. Compared with graphene whose band gap is 0, MoS<sub>2</sub> layered structure with bandgap varies from 1.2 eV (bulk MoS<sub>2</sub>) for indirect-gap to 1.8 eV (monolayer) for direct-bandgap, leading to stronger effect on electrical properties produced by molecule adsorption, fundamentally improving its sensitivity [21,22]. It is possible to form *p*-*n* heterojunction with other semiconducting materials as a new type of electronic devices, rendering MoS<sub>2</sub> a capability in detecting various gases at low temperature. For instance, Zhao et al. showed

MoS<sub>2</sub>-decorated TiO<sub>2</sub> nanotube gas sensor exhibited excellent sensing performance toward ethanol gas at working temperature of 150 °C [23]. Liu et al. reported MoS<sub>2</sub> thin films grown on p-type Si substrates by DC magnetron sputtering technique and exhibited obvious sensing properties to NH<sub>3</sub> at room temperature [24]. In addition, the decorating or doping with noble metals also was recently considered to be alternative effective method to improve the sensing performance of MOS-based gas sensors at low temperature [25,26]. Noble metal nanoparticles (NPs) such as Ag, Au, Pt and Pd, have unique chemical and catalytic properties, which could enhance the adsorption of gas molecules and accelerate the electron exchange between the sensor and the target gas [26,27]. For instance, C. Kuru et al. reported that MoS<sub>2</sub>-Pd composite by fabricating field effect transistor (FET) devices exhibited much higher sensor response with shorter response and recovery times than graphene-Pd composite at room temperature [28]. Wang et al. reported Pt-loaded SnO<sub>2</sub> composite-based sensor had a high response to CO at room temperature as well as a good selectivity [29]. Xiang et al. presented a hydrogen sensor based on Pd NPs doped TiO<sub>2</sub> nanotubes, which exhibited short response/recovery time, outstanding selectivity as well as good reproducibility at room temperature [30].

This work reports a methane gas sensor based on Pt-loaded  $Co_3O_4/MoS_2$  nanocomposite fabricated by layer-by-layer (LbL) selfassembly method. The morphologies, microstructures and compositional characteristics of the Pt-  $Co_3O_4/MoS_2$  nanocomposite were sufficiently examined by X-ray diffraction (XRD), energy dispersive spectrometer (EDS), scanning electron microscopy (SEM), elemental mapping, transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). The methane gas-sensing performance of the as-prepared sensor was investigated and compared with pure  $Co_3O_4$  and  $Co_3O_4/MoS_2$  counterparts. Experimental results reveal that the sensing behavior of the Pt- $Co_3O_4/MoS_2$  sensor is superior to the other two sensors, in terms of high response, fast response/recovery time as well as outstanding repeatability. Furthermore, the potential sensing mechanism of the sensor toward methane gas was explored in detail.

#### 2. Experiment

#### 2.1. Materials

Sodium molybdate  $(Na_2MoO_4 \cdot 2H_2O),$ thioacetamide oxalic acid (C<sub>2</sub>H<sub>2</sub>O<sub>4</sub>), cobalt nitrate hex- $(CH_3CSNH_2),$  $(Co(NO_3)_2 \cdot 6H_2O, >98.5\%),$  trisodium ahvdrate phosphate (Na<sub>3</sub>PO<sub>4</sub>·12H<sub>2</sub>O, >98%), hydrazine hydrate (N<sub>2</sub>H<sub>4</sub>·H<sub>2</sub>O) and chloroplatinic acid hexahydrate (H2PtCl6·6H2O,>99%) were supplied by Sinopharm Chemical Reagent Co. Ltd (Shanghai, China). Additionally, poly (dimethyl diallyl ammonium chloride) (PDDA) and poly (sodium 4-sty-renesulfonate) (PSS) were obtained from Sigma-Aldrich Inc. All the chemicals were used as received without further purification.

#### 2.2. Fabrication

The fabrication of Pt-Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub> nanocomposite is performed by combining hydrothermal synthesis with LbL self-assembly method. Fig. 1(a) and (b) demonstrate the process for synthesizing Co<sub>3</sub>O<sub>4</sub> and MoS<sub>2</sub> nanomaterials via hydrothermal method [5,31]. For Co<sub>3</sub>O<sub>4</sub> fabrication, an mount of Co (NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O, Na<sub>3</sub>PO<sub>4</sub>·12H<sub>2</sub>O and N<sub>2</sub>H<sub>4</sub>·H<sub>2</sub>O were dissolved into deionized (DI) water with stirring for 1 h and then transferred to a stainless-steel autoclave for heating at 180 °C for 12 h. For MoS<sub>2</sub> fabrication, Na<sub>2</sub>MoO<sub>4</sub>·2H<sub>2</sub>O, thioacetamide and oxalic acid were dissolved into DI water and stirred over 1 h, and then transferred to a stainless-steel autoclave for heating at 200 °C for 24 h. The  $Co_3O_4$  and  $MoS_2$  solutions were collected for use after washing with DI water several times to remove excess ions. In order to enhance the electrostatic interaction of  $Co_3O_4$  and  $MoS_2$ , an equal volume of PDDA and PSS was added into the  $Co_3O_4$  and  $MoS_2$  solutions as cationic and anionic polyelectrolyte, respectively.

Fig. 1(c) shows the LbL self-assembly fabrication of the Pt- $Co_3O_4/MoS_2$  nanocomposite film. Firstly, two precursor layers of PDDA/PSS were self-assembled on the interdigital electrode (IDE) device with FR4 as substrate for surface modification. Afterwards, the Co<sub>3</sub>O<sub>4</sub> and MoS<sub>2</sub> layers were alternately deposited through solution immersion for five cycles via LbL self-assembly technique, in which MoS<sub>2</sub> layer was arranged as top layer. Here, the immersing time of PDDA and PSS were 10 min, Co<sub>3</sub>O<sub>4</sub> and MoS<sub>2</sub> were 20 min. Rinsing with DI water and drying with nitrogen gas after each monolayer assembly are required for strengthening the interconnection between layers. Next, the device was immersed into 3 mmol/L H<sub>2</sub>PtCl<sub>6</sub>·6H<sub>2</sub>O solution over 1 h to achieve Pt-loading on Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub> nanocomposite. Finally, the Pt-Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub> device was heated at 80°C for 12 h. In order to highlight this work, the comparative devices of pure  $Co_3O_4$  and  $Co_3O_4/MoS_2$  were fabricated. The Co<sub>3</sub>O<sub>4</sub> film sensor was fabricated by drop-casting Co<sub>3</sub>O<sub>4</sub> solution on the IDE device, and the Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub> film sensor was fabrication by LbL self-assembly route as the above-mentioned, but without the immersion of H<sub>2</sub>PtCl<sub>6</sub>·6H<sub>2</sub>O solution.

#### 2.3. Instrument and analysis

The surface structure and morphology of the as-prepared samples were characterized by X-ray diffraction (XRD, Rigaku D/Max 2500PC), field emission scanning electron microscopy (FE-SEM, Hitachi S-4800) and transmission electron microscope (TEM, JEOL JEM-2100). The chemical composition analysis was performed by Hitachi S-4800 equipped with an energy dispersive spectrometer (EDS). The elemental mapping was examined by Merlin FE-SEM from Carl Zeiss (Germany) at 2–5 kV range accelerating voltage. Xray photoelectron spectroscopy (XPS) was performed to examine the elemental composition and chemical state of the as-prepared sample by a Thermo Scientific K-Alpha XPS spectrometer.

The gas-sensing measurement was performed by exposing the prepared sensors to CH<sub>4</sub> gas, and the resistance response was recorded via Agilent 34970A data-logger. The sensing device was placed in a sealed chamber equipped with appropriate inlet and outlet for gas. Air used as background gas and a known volume of CH<sub>4</sub> gas was injected inside the testing chamber to achieve the desired concentration for test. The relative humidity of the atmosphere where the gas sensing tests performed is 45%RH. The working temperature for the sensor is controlled through applying a voltage to a heating resistor by a power source (GPD-4303S). The response value (R) was determined by  $R = |R_a - R_g|/R_a \times 100\%$ , where  $R_a$  is the resistance of the sensor in air and  $R_g$  is the resistance of the sensor in the target gas.

#### 3. Results and discussion

#### 3.1. Materials characterizations

Fig. 2 shows the XRD patterns of  $Co_3O_4$ ,  $MoS_2$  and Pt-Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub> samples. The diffraction peaks in the XRD pattern of Co<sub>3</sub>O<sub>4</sub> are in good agreement with those on the standard card of cubic spinel Co<sub>3</sub>O<sub>4</sub> (JCPDS No. 76-1802). The reflection peaks of MoS<sub>2</sub> are corresponding to the (002), (100), (103) and (110) reflections of MoS<sub>2</sub> (JCPDS 37-1492). The XRD pattern of the Pt-Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub> sample illustrates all the distinct lattice planes corresponding to the MoS<sub>2</sub>, Co<sub>3</sub>O<sub>4</sub> and Pt nanoparticles, confirming Download English Version:

## https://daneshyari.com/en/article/5009113

Download Persian Version:

### https://daneshyari.com/article/5009113

Daneshyari.com