Accepted Manuscript

Title: Fabrication of mesoporous In₂O₃ nanospheres and their ultrasensitive NO₂ sensing properties

Authors: Bingxin Xiao, Dongxue Wang, Shanliang Song, Chengbo Zhai, Fei Wang, Mingzhe Zhang

PII: S0925-4005(17)30623-8

DOI: http://dx.doi.org/doi:10.1016/j.snb.2017.04.022

Reference: SNB 22108

To appear in: Sensors and Actuators B

Received date: 8-12-2016 Revised date: 21-3-2017 Accepted date: 5-4-2017

Please cite this article as: Bingxin Xiao, Dongxue Wang, Shanliang Song, Chengbo Zhai, Fei Wang, Mingzhe Zhang, Fabrication of mesoporous In2O3 nanospheres and their ultrasensitive NO2 sensing properties, Sensors and Actuators B: Chemicalhttp://dx.doi.org/10.1016/j.snb.2017.04.022

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Fabrication of mesoporous In_2O_3 nanospheres and their ultrasensitive NO_2 sensing properties

Bingxin Xiao, Dongxue Wang, Shanliang Song, Chengbo Zhai, Fei Wang and Mingzhe Zhang*

^aState Key Laboratory of Superhard Materials, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China.

^bState Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China.

* Corresponding author: Prof. Mingzhe Zhang, Email: zhangmz@jlu.edu.cn

Research Highlights

- A facile hydrothermal route was applied to fabricated the mesoporous In₂O₃ nanospheres with large specific area.
- The morphology evolution reveals three stages including nucleation, splitting and growing up.
- Appropriate annealing temperature of the In_2O_3 nanospheres is also very critical for NO_2 detection.
- Response of 330.1 to 100 ppb of NO₂ was reached.

Abstract Ultra-sensitive NO₂ sensor based on hierarchical In₂O₃ nanospheres which are successfully fabricated via facile thermal processes. Such morphology evolution is investigated by the time-dependent experiment. Remarkable features of the mesoporous structure and, large specific area (82.1 m²/g) and small sized nanoparticles result in the In₂O₃ nanospheres a high NO₂ sensing efficiency. For the In₂O₃ based NO₂ sensor, temperature of annealing process is an important factor to influence its sensing performance; the rather high sensitivity (360.1, 100 ppb) and low detection limit (1

Download English Version:

https://daneshyari.com/en/article/5009209

Download Persian Version:

https://daneshyari.com/article/5009209

<u>Daneshyari.com</u>