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a  b  s  t  r  a  c  t

Passive  micromixers  have  a  wide  applications  due  to  no need  of  external  energy  and  moving parts.  Strat-
ification  of  chaotic  advection  is  an  important  mechanism  to  enhance  mixing  efficiency  in  micromixers.  A
novel  Baker-based  micromixer  with  ceaseless  stratification  was  designed  on  the  basis  of chaotic  theory.  In
order  to  illustrate  the  perfect  mixing  efficiency  and  mixing  mechanism  in such  a micromixer,  numerical
simulations  were  carried  out,  and  comparisons  with  other splitting-merging  micromixers  named  Helical-
mixer  and  Smale-mixer  are  conducted.  The  numerical  results  show  us  that,  the  Baker-mixer  has  more
excellent  mixing  efficiency  at low  Reynolds  number  because  of  more-folds  of interfacial  areas  between
two  streams  caused  by  stratification  effect.  However,  the  mixing  efficiency  of Baker-mixer  is  not  a  patch
on that  of Smale-mixer  at high  Reynolds  number.  The  reason  should  be  that,  bending  channels  in  Smale-
mixer  can  induce  secondary  flow to enhance  convection  mixing.  LIF  experiments  were  conducted  and
the  mechanism  of chaotic  mixing  in  Baker-mixer  and  validity  of numerical  method  are  verified  by the
good  agreement  between  numerical  results  and  experimental  results.  A  powerful  auspice  for  the  design
of the  high-performance  chaotic  passive  micromixer  is  provided.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The integrated microfluidic devices called as lab-on-a-chip can
offer many advantages, e.g., extremely low volume consumption,
inexpensive and small, very short sample-to-result time, over the
traditional analytical devices. Efficient mixing in microdevices is
required for DNA analysis, mass spectrometry, biosensors, surface
patterning, and other applications [1–4]. It is known to all, a relative
long time should be taken for the mixing of species in microde-
vices because molecular diffusion is dominant, while the convective
mixing caused by turbulence is not practically attainable at low
Reynolds number. The micromixers can be categorized into active
and passive mixers. Active mixers utilize external energy, such us
electrical energy, magnetic energy, acoustic energy, mechanical
energy and so on, to induce transverse flows [5–9].

Passive micromixer has been widely used in many microdevices
because of the simplicity in fabrication and manipulation. The pas-
sive mixing in a single micro-channel is attractive for two reasons.
Firstly, a passive mixing scheme, which relies solely on a constant
flow source, is generally more robust and easier to implement than
an active mixing scheme which exerts the control over the flow
field by using the moving parts or changing the pressure gradi-
ents. Secondly, a single channel can maintain a relatively constant
cross section, which results in the lower strain rates than that if
the flow is split into multiple smaller streams [10,11]. Therefore, in
order to enhance the diffusion and mixing of species in the micro-

channel, Kamholz et al. [12] and Nguyen, N.T.[13] proposed a new
concept named “chaotic advection”, i.e. the passive fluid particles
are advected by a periodic, laminar velocity field and exhibit chaotic
trajectories.

Chaotic advection can enhance the stretching and folding of
species interfaces. This deformation of the fluid-fluid boundaries
increases the interfacial areas across which diffusion occurs, and
enhances the mixing efficiency [14]. Lee et al. [15] summarized all
kinds of chaotic mixer for micro-channels. Liang et al. [16] stud-
ied the mixing characteristics of the contraction-expansion helical
mixer in the laminar regime. It is found to be superior in com-
parison to the regular helical mixer at higher Reynolds number.
Adam T. et al. [17] designed and fabricated a micromixer with short
turning angles for self-generated turbulent structures, the mixing
efficiency of 98% was obtained at Reynolds number less than 2. Z.H.
Lu et al. [18] investigated a micromixer with 2 T-type premixers
and 4 butterfly-shape cross-channels, the corresponding residence
time is 0.44 ms for 90% and 0.49 ms  for 95%. C.Y. Lin et al. [19],
demonstrated a self-vortical micromixer without obstructions, the
perfect mixing can be achieved even in lower Reynolds number.
They studied a mixer with J-shaped baffles also [20], and better
mixing performance was exhibited, the percentage of mixing was
about 1.2 to 2.2 times higher when compared to those without baf-
fles in the range of Reynolds number 5 to 350. We  designed and
simulated a passive chaotic micromixer with helical channel on the
basis of chaotic theory 2006 [10], the mechanism of chaotic advec-
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tion is based on a Smale-transformation. Much more better mixing
efficiency can be achieved especially at lower Reynolds number
because of better stratification in such a mixer.

In spite of the well-documented theoretical evidence for the
passive mixer, the mixing efficiency is not approving when
Reynolds number is lower than 1 because the chaotic convection
in such case is not strong enough. Only when the interfacial areas
between species are very large, the mixing efficiency will be abso-
lutely approving. It is obvious that increasing the interfacial areas
is important for obtaining higher mixing efficiency when Reynolds
number is lower than 1. Therefore, the main objective of present
work is to clarify the mechanism of chaotic advection for lower
Reynolds number.

2. Theory and model

2.1. Theoretical basis

The motion of fluid particles is described mathematically with
a map  or mapping. Let denote the region occupied by the fluid.
We refer to points in as fluid particles. The flow of fluid particles
is mathematically described by a smooth, invertible transforma-
tion, or map, of into, denoted for one advection cycle. Similarly,
advection cycles are obtained by repeated applications of, denoted.
Mixing is a critical concept. Within the domain, let denote a region
of species named sample and let denote another species named
detection. Mathematically, we denote the amount of sample that is
contained in after applications of the mixing process by, that is the
volume of that ends up in after advection cycles. Then the fraction
of sample contained in is given by [21].

Chaos is a phenomenon discovered by an American scientist
named Lorenz in 1963 in an experiment for simulating atmospheric
turbulence [22]. It was said that there was up to now no universally
accepted definition for chaos yet [23]. Nevertheless, in practice, a
map  may  be called chaotic if the orbits have some positive Lya-
punov exponents. Lyapunov exponent is a number associated with
an orbit, describing its stability in the linear approximation. It
is known that the Bernoulli property embodies a deterministic
chaotic system to behave [24].

Smale, an American mathematician, established a geometrical
model named Smale horseshoe in the 1960s [25]. Smale horse-
shoe model is one of chaotic model which reveals the essence of
chaotic mixing, i.e., stretching and folding to disrupt the period-
icity of advection cycle. Fig. 1(right) is the schematic diagram of
Smale transformation. However, the Smale transformation is iso-
morphic to Bernoulli transformation with an invariant set of zero
volume theoretically. Baker transformation is however isomorphic
to Bernoulli transformation in arbitrary region of R [26]. Hence,
Baker transformation is the best transformation for chaotic mix-
ing in theory, because the fluids can be compressed, stretched, cut
and stacked to realize more layers of stratification. Fig. 1(left) is the
schematic diagram of Baker transformation.

2.2. Description of micromixer models

On the basis of chaotic mixing theory, Baker-mixer and Smale-
mixer were constructed on account of Baker transformation, in
order to insight into the mechanism of chaotic mixing (see in Fig. 2).
To clarify the weight of convective effect, stratification effect in
Smale-mixer, a Helical-mixer with identical convective effect to
Smale-mixer was constructed. All three mixers have two inlets for
sample and detection respectively, the size of inlet and outlet are
both 100 �m × 100 �m,  along with the channel size being the same
as that in Ref. [10] for comparison. Mixing unit is defined as fun-
damental element for mixing with periodic splitting and merging

Fig. 1. Schematic diagram of Baker transformation (left) and Smale transformation
(right).

structures. To Smale-mixer and Helical-mixer, the length of mixing
unit with 2 splitting and merging structures is 800 �m,  while the
length of mixing unit with only one splitting and merging struc-
ture is 400 �m to Bakermixer. It is worth noting that, the channel
in mixing unit of Baker-mixer is somewhere contracted to half size
(50 �m)  of original channel (100 �m).  All of other dimensions of
the microchannels in three mixers are 100 �m.

3. Numerical model

3.1. Control equations

Assumed incompressible fluids with smaller velocity in a
microchannel, equation of continuity can be written as:

∇ · →
V = 0 (1)

where
→
V is velocity vector.

Consider incompressibility and constant viscosity, momentum
conservation equation neglecting gravity can be written as:

�

[
∂

→
V

∂t
+  (

→
V ·  ∇)

→
V

]
= −∇p + �∇2 →

V (2)

where p, � and � are pressure, density and dynamic viscosity,
respectively.
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