Accepted Manuscript

Title: Improved selectivity of SnO_2 :C alloy nanoparticles towards H_2 and ethanol reducing gases; role of SnO_2 :C electronic interaction

Authors: Mehar Bhatnagar, Shivani Dhall, Vishakha Kaushik, Akshey Kaushal, Bodh Raj Mehta

PII:	S0925-4005(17)30142-9
DOI:	http://dx.doi.org/doi:10.1016/j.snb.2017.01.135
Reference:	SNB 21660
To appear in:	Sensors and Actuators B
Received date:	24-8-2016
Revised date:	11-1-2017
Accepted date:	21-1-2017

Please cite this article as: Mehar Bhatnagar, Shivani Dhall, Vishakha Kaushik, Akshey Kaushal, Bodh Raj Mehta, Improved selectivity of SnO2:C alloy nanoparticles towards H2 and ethanol reducing gases; role of SnO2:C electronic interaction, Sensors and Actuators B: Chemical http://dx.doi.org/10.1016/j.snb.2017.01.135

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1

Improved selectivity of SnO₂:C alloy nanoparticles towards H₂ and ethanol reducing gases; role of SnO₂:C electronic interaction

Mehar Bhatnagar, Shivani Dhall, Vishakha Kaushik, Akshey Kaushal, Bodh Raj Mehta*

Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi- 110016, India

Abstract

In the present study, changes in the sensing properties of SnO₂ on Carbon incorporation have been investigated in detail. The gas sensing response of size-selected SnO₂ and SnO₂:C alloy nanoparticles prepared by gas phase deposition method have been investigated for H₂ and ethanol over a varied temperature range (50°C- 200°C). The incorporation of carbon into SnO₂ lattice results in a large change in the sensing behaviour towards the two gases both having reducing nature. SnO₂:C nanoparticles show positive sensing response for H₂ and negative sensing response for ethanol, whereas SnO₂ nanoparticles show a normal sensing response of an n-type semiconductor towards both the reducing gases. Observed values of activation energy of sensing and energy levels of O-vacancies observed in the PL spectra of SnO₂ and SnO₂:C are consistent with these results. (i) Catalytic C-H interaction and (ii) modified work function of SnO₂ and C on hydrogenation resulting in alteration of electronic exchange between SnO₂ and C, and (iii) passivation effect of carbon during SnO₂-ethanol interaction along with a possibility of reduction in SnO₂ sites in SnO₂:C nanoparticles, are responsible for the observed behaviour. The present study shows that the incorporation of C in SnO₂ nanoparticles results in excellent selectivity towards H₂ and ethanol (both having reducing nature) in the low temperature range, normally not observed in oxide based resistive sensors.

Key words: size-selected SnO₂:C alloy nanoparticles, PL, selectivity, reducing gases, catalytic effect

^{*} Author to whom all correspondence must be addressed.

Electronic mail: brmehta@physics.iitd.ac.in

Download English Version:

https://daneshyari.com/en/article/5009793

Download Persian Version:

https://daneshyari.com/article/5009793

Daneshyari.com