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a b s t r a c t

In a Hall plate with finite size and contacts the Hall output voltage is given by the product of sheet resis-
tance, input current, Hall mobility, magnetic flux density, and Hall geometry factor GH . GH 2 ½0;1�
accounts for the loss in signal due to the contacts. At weak magnetic field GH ! GH0 is a function of geo-
metrical parameters only, which makes it the crucial point for layout optimization. We show how to
express GH0 alternatively as a function of electrical parameters only, namely of input and output resis-
tances over sheet resistance. This allows for an analytical optimization of signal-to-noise-ratio (SNR)
without getting lost in the multitude of geometrical representations of equivalent Hall plates. In the
course of this investigation we notice a hidden symmetry property of GH , which we prove rigorously
in the limit of small magnetic fields. The physical meaning of this symmetry in the case of Hall plates with
equal input and output resistances is also explained.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Allthough the Hall effect has been discovered already in 1879
[1], the first attempts to calculate the output voltage of Hall plates
rigorously started much later, shortly after World War Two [2]. The
reason for this long idle period might have been to a certain extent
the difficulties in this calculation but probably even more the lack
of interest in an accurate quantitative description. This changed
drastically with the advent of semiconductor industry in the
1950s (see also the introduction to [3]). Then Wick introduced
the conformal mapping method to compute the Hall plate output
voltage [3] and shortly afterwards van der Pauw applied the same
technique to sheet resistance measurements on Hall plates at zero
magnetic field [4,5]. In the same year Lippmann and Kuhrt coined
the term geometry function (which we now call Hall geometry fac-
tor) and computed it for rectangular Hall plates [6] (the same infor-
mation is found in [3], too). In the following decade the Hall
geometry factor was computed analytically for various devices,
yet due to computational difficulties one pair of contacts had to
be small. De Mey reduced the complexity of the calculation by
an expansion method for weak magnetic fields [7]. Häusler consid-
ered a very special circular Hall plate with four equal contacts
which cover 50% of the circumference, for which he could express
the Hall geometry factor in terms of beta-functions and hypergeo-
metric functions [8]; an impressive achievement, however, the
only free parameter left is the arbitrary Hall angle. Thus, it is not

useful for device optimization. Luckily, we will identify exactly this
type of Hall plates as the one with optimum signal to noise ratio
(SNR), so that his formulae are invaluable in practice particularly
at large magnetic field. Versnel considered rectangular Hall plates
with finite contacts at arbitrarily large magnetic field [9]. He also
focused on Hall and van der Pauw devices with 90�-symmetry
[10,11]. His results contained ratios of sums of numerical integrals
as functions of geometrical input parameters, which are adequate
to obtain numerical values. However, one cannot derive any prop-
erties or optimization rules from his analytical formulae. From the
mid-1980s onwards numerical computation of Hall potentials
became possible, and this offers a lot of new possibilities (e.g. to
consider inhomogeneous doping and inhomogeneous plate thick-
ness, velocity saturation and 3D-effects in real devices [12,13]).
They undoubtedly have their merits when we want to study the
properties of specific device geometry, but they are less suited to
get a survey over the global optimization landscape of all possible
devices.

Already the early paper of Wick mentioned a tremendous ben-
efit of the conformal mapping technique: if we find a conformal
map from one device to another one, this implies that both devices
have identical electrical properties and identical Hall output volt-
ages. It means they have the same input resistance and the same
output resistance, they give the same readings in a van der Pauw
measurement [14,15], and they can be modeled by the same equiv-
alent circuit. Therefore, there must be a unique relation between
any set of electrical parameters and its respective Hall geometry
factor. Hence, we need to do the difficult task of computing the Hall
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geometry factor as a function of electrical parameters only once for
all device geometries (as long as they belong to the same family of
conformal maps). Then we can do the simpler calculation of elec-
trical parameters for all distinct shapes of devices as functions of
their layout parameters. This second step is only interesting for
the physical device engineer (layout engineer) – the electronic con-
cept and circuit design engineers can even skip it, because they are
only interested in the electrical parameters and in the magnetic
sensitivity of the device, irrespective of its shape. The engineering
community seems to have lost sight of this remarkable benefit of
the conformal mapping method, because during �1984 . . . 2015
many papers showed Hall geometry factors or magnetic sensitivi-
ties of Hall plates related to specific device geometries. Only
recently an analytical formula was given that relates the Hall
geometry factor at small magnetic field to input and output effec-
tive numbers of squares (see Eq. (29a–c) and Fig. 7b in [16]).
Although the formula is an integral over an incomplete elliptic
integral, which (still) resists a closed form solution, it is compact
enough to derive several symmetry properties of GH and to find
unique optimum parameters for maximum SNR of Hall plates.

In this paper we further simplify this integral formula, derive an
expression for the SNR, plot it for all possible Hall plates with two
perpendicular mirror symmetries, identify the parameters for max-
imum SNR, give the maximum magnetic detectivity of Hall plates
in a given bandwidth, reveal a hidden symmetry property of GH

and give a physical interpretation of it.

2. The Hall geometry factor as a function of input and output
resistances

In an infinite Hall-effect region the Hall electric field vector~EH is

given by the product of resistivity q, current density~J, Hall mobil-

ity lH , and induction field ~B: ~EH ¼ q~J � ðlH
~BÞ. In thin Hall plates

with finite size and contacts the output voltage Vout is given by a
similar product of equivalent integral quantities [6].

Vout ¼ Rsh IinlHB?GH ð1aÞ
The output voltage of the Hall plate is Vout , the input current

through the Hall plate is Iin. Rsh ¼ q=tH is the sheet resistance (also
called square resistance) of the Hall effect region with the homoge-
neous Hall plate thickness tH . The sheet resistance can be measured
for any contact size with the generalized method of van der Pauw
without need to know specific details of the geometry [14,15]. The
product of Hall-mobility lH times magnetic induction B? perpen-
dicular to the Hall plate is the equal to the tangent of the Hall angle

hH: lHB? ¼ tan hH . hH is the angle between the electric field and the

current streamlines hH ¼ \ð~E;~JÞ. It is constant throughout the Hall-
effect region irrespective of its shape. The Hall geometry factor GH

depends on the shape of the Hall plate and the size of its contacts –
and it also depends on the Hall angle hH: at large Hall angle it tends
to 1. In other words, at weak magnetic field the Hall geometry fac-
tor is smallest. There we have the largest influence of the finite Hall
plate geometry on the Hall output voltage. That is one justification
why we focus on the weak field limit of the Hall-geometry factor

GH0 ¼ lim
B?!0

GH ð1bÞ

A second motivation for GH0 is that we want to clarify what is
the ultimate magnetic resolution of Hall plates, and there of course
the field is weak. In [16] we have computed GH0 for a large class of
Hall plates, namely for all plates with two perpendicular mirror
symmetries. Fig. 1 shows several embodiments of Hall plates that
belong to this class. In [16] we chose plate # 1 as representative
of this class of Hall plates to carry out the calculation, but the
results are valid for the entire class of Hall plates, because they
can be mapped onto each other by conformal transformation. In
modern sensors Hall plates with a higher degree of symmetry
(90� symmetry) are commonly used, because they are better suited
for the spinning current Hall probe scheme. However, in the new
emerging field of Vertical Hall effect devices one is forced to work
with even less symmetry: they usually have only one mirror axis of
symmetry. In [16] the result was

GH0 ¼1
2
kpkf 1þ CC1

Kðf ÞK 0ðpÞ
Z 1
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Fðt; f Þffiffiffiffiffiffiffiffiffiffiffiffi
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with the abbreviations

CC1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� f 2Þ
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Thereby we used the incomplete elliptic integral of the first
kind which is commonly defined as

Fðw; kÞ ¼
Z w

0
ð1� a2Þ�1=2ð1� k2a2Þ�1=2

da ð2dÞ

IinIin

#1 #2

s

w

C1

C2

C3

C4

Iin

#3

Iin

#4

Fig. 1. Various embodiments of Hall plates with two perpendicular mirror symmetries to which the presented theory applies. The two dashed lines of mirror symmetry are
shown. They go through the centers of opposite contacts C1-C3 and C2-C4, respectively. Device # 1 is studied in detail as pars pro toto, but the results are valid for the entire
class of Hall plates. This class is characterized by three degrees of freedom (DoF) for each device and the DoFs can be measured with high accuracy by a generalized van der
Pauw methode [15]. The figure shows current streamlines for a Hall angle of 45� and the color coding denotes electric potential (red means +1 V, blue means 0 V). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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