Accepted Manuscript

A High-Speed Lateral PIN Polysilicon Photodiode on Standard Bulk CMOS Process

Wanghui Zou, Yu Xia, Diping Chen, Yun Zeng

PII: S0038-1101(16)30324-0

DOI: http://dx.doi.org/10.1016/j.sse.2016.12.005

Reference: SSE 7163

To appear in: Solid-State Electronics

Received Date: 4 July 2016
Revised Date: 2 December 2016
Accepted Date: 7 December 2016

Please cite this article as: Zou, W., Xia, Y., Chen, D., Zeng, Y., A High-Speed Lateral PIN Polysilicon Photodiode on Standard Bulk CMOS Process, *Solid-State Electronics* (2016), doi: http://dx.doi.org/10.1016/j.sse.2016.12.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A High-Speed Lateral PIN Polysilicon Photodiode on Standard Bulk CMOS Process

Wanghui Zou, Yu Xia, Diping Chen and Yun Zeng

School of Physics and Electronics, Hunan University, Changsha, 410082, China Corresponding author: yunzeng@hnu.edu.cn

Abstract: This paper reports a lateral PIN polysilicon photodiode on standard bulk complementary metal-oxide-semiconductor (CMOS) process for monolithically integrated high-speed optoelectronic integrated circuits (OEIC). A nominal undoped polysilicon as the photodetection area is intentionally created without introducing any process modification. With the device area of $50\times50~\mu\text{m}^2$, a measured responsivity of 46mA/W and a quantum efficiency of 11% were observed under the reverse voltage of 10V and the wavelength of 520nm. A compact equivalent circuit model for the proposed lateral photodiode is built to analyze the frequency response, and a bandwidth of over 20GHz was obtained from the measured data, which is to the best of our knowledge the largest bandwidth ever reported based on standard bulk CMOS process.

Keywords: Polysilicon photodiode; high-speed optical interconnection; optoelectronic integrated circuits (OEIC); responsivity; bandwidth; standard bulk complementary metal-oxide-semiconductor (CMOS)

1. INTRODUCTION

Short distance high-speed optical communication, such as chip-to-chip and board-to-board interconnections, and single-chip optoelectronic integrated circuits (OEIC) are attracting increasing research interests. For an optical receiver, one of the most important devices is the photodetector. From cost and performance perspective, it's preferred to monolithically integrate the photodetector with the circuit using standard complementary metal-oxide-semiconductor (CMOS) process. The Silicon-on-Insulator (SOI) CMOS is able to provide much higher performance compared to the bulk CMOS because of its substrate isolation structure and lower parasitic capacitance. In [1], the SOI-based lateral PIN photodiode with the device area of 75×75 μm² can provide high bandwidth of over 10GHz. However, the bulk CMOS is much more popular than SOI CMOS because of its much lower cost. Various kinds of diodes available in bulk CMOS process were investigated, and many techniques were proposed to reduce the impact of slow diffusion current and improve the frequency response [2-6]. In [2], the nwell-substrate diode was used, and a meshed spatially-modulated scheme was proposed. A bandwidth of 6.9GHz and a responsivity of 29mA/W were achieved with the device area of 55×55 μm². In [3], the n⁺-pwell diode enclosed by deep-nwell was used, and a deep-nwell bias scheme was

Download English Version:

https://daneshyari.com/en/article/5010374

Download Persian Version:

https://daneshyari.com/article/5010374

<u>Daneshyari.com</u>