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a b s t r a c t

To solve a stochastic linear evolution equation numerically, finite dimensional approximations are
commonly used. For a good approximation, one might end up with a sequence of ordinary stochastic
linear differential equations of high order. To reduce the highdimension for practical computations,model
order reduction is frequently used. Balanced truncation (BT) is awell-known technique fromdeterministic
control theory and it was already extended for controlled linear systems with Lévy noise. Recently, a
new ansatz was investigated which provides an alternative way to generalize BT for stochastic systems.
There, the question of the existence of an H2-error bound was asked which we answer in this paper. We
discuss how this bound can be computed practically and how to use it to find a suitable reduced order
dimension.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Model order reduction (MOR) is ofmajor importance in the field
of deterministic control theory. It is used to save computational
time by replacing large scale systems by systems of low order in
which the main information of the original system should be cap-
tured. Such high dimensional problems occur for example after the
spatial discretization of a partial differential equation (PDE) which
can be used to model chemical, physical or biological phenomena.
A particular ansatz to obtain a reduced order model is to balance
a system such that the dominant reachable and observable states
are the same. Afterwards, the difficult to observe and difficult to
reach states are neglected. One way to do that is to use balanced
truncation (BT)whichwas introduced byMoore [1] and a thorough
treatment of the topic can be found in Antoulas [2] or Obinata,
Anderson [3].

Since many phenomena in computational sciences and engi-
neering contain uncertainties, it is natural to extend PDE models
by adding a noise term. This leads to stochastic PDEs (SPDEs)
which are studied in Da Prato, Zabczyk [4] and in Prévôt and
Röckner [5] for the Wiener case. Peszat, Zabczyk consider more
general equations with Lévy noise in [6], where the solutions may
have jumps. To solve SPDEs numerically, one can reduce them
to large scale ordinary SDEs by using the Galerkin method. For
that reason, generalizing MOR techniques to stochastic systems
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can be motivated. The mentioned Galerkin approximation is for
example investigated in Grecksch, Kloeden [7], Hausenblas [8],
Jentzen, Kloeden [9] and Redmann, Benner [10].

To reduce large scale SDEs, balancing related methods are gen-
eralized. BT is considered for SDEs with Wiener noise in Benner,
Damm [11] and for systems with Lévy noise it is done by Benner,
Redmann in [12]. Benner and Redmann provide an H2-type error
bound and the preservation of mean square asymptotic stability
is shown in Benner et al. [13]. In Benner et al. [14] and Damm,
Benner [15] an example is presented which clarifies that the
H∞-error bound from the deterministic case does not hold for
stochastic systems. Recently, a new ansatz to extend BT to SDEs
is considered by Benner et al. [14] or Damm, Benner [15] in which
a new reachability Gramian is used. This alternative Gramian so far
has no integral representation involving the fundamental solution
of the system which is in contrast to the first approach. The ad-
vantage of the new ansatz is the existence of an H∞-error bound
and the preservation of mean square asymptotic stability. It only
remains to prove an H2-error bound to have a closed theory. This
H2-error bound analysis is present in this paper.

In this paper, we focus on BT for SDEs with Lévy noise. We
start with giving an overview about the twoways to generalize the
deterministic framework and state themost important results that
are already proven. In Section 2, we briefly discuss the procedure
and emphasize results on error bounds and the stability analysis of
the methods. In Section 3, we contribute an H2-type error bound
ϵ̃ for the new ansatz in [14] and [15] to close the gap in the error
bound analysis. The non-negative number ϵ̃ bounds the worst case
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mean error between the original and the reduced order output Y
and YR as follows:

sup
t∈[0,T ]

E
Y (t) − ỸR(t)


2

≤ ϵ̃ ∥u∥L2T
.

As a first step, we provide a representation of ϵ̃ which can be taken
for practical computations and hence be used for finding a suitable
reduced order dimension. For this representation, we need to solve
three matrix equations which are much cheaper than computing
the expected value E

Y (t) − ỸR(t)

2
. Furthermore, we prove that

ϵ̃ can be rewritten as an expression depending on the truncated
Hankel singular values (HSVs) of the systemsimilar to theH∞ error
bound. This second representation can be used to find a suitable
reduced order dimension based on the HSVs and it shows that the
error bound is small if the truncated states are unimportant (states
corresponding to the small HSVs).

2. Balancing of stochastic systems with Lévy noise

Let A, Nk ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n. For t ≥ 0 and
X(0) = x0 we consider the following linear stochastic system:

dX(t) = [AX(t) + Bu(t)]dt +

q∑
k=1

NkX(t−)dMk(t), (1)

Y (t) = CX(t),

where M1, . . . ,Mq are scalar uncorrelated and square integrable
Lévy processes with mean zero defined on a filtered probabil-
ity space

(
Ω,F, (Ft )t≥0,P

)
.1 In addition, we assume Mk (k =

1, . . . , q) to be (Ft )t≥0-adapted and the increments Mk(t + h) −

Mk(t) to be independent of Ft for t, h ≥ 0. With L2T we denote the
space of all (Ft )t≥0-adapted stochastic processes v with values in
Rm, which are square integrable with respect to P ⊗ dt . The norm
in L2T is given by

∥v∥
2
L2T

:= E
∫ T

0
vT (t)v(t)dt = E

∫ T

0
∥v(t)∥2

2 dt,

where we define the processes v1 and v2 to be equal in L2T if they
coincide almost surely with respect to P⊗ dt . For the case T = ∞,
we denote the space by L2. Further, we assume the control u ∈ L2T
for every T > 0. The solution of Eq. (1) we denote by X(t, x0, u)
and the corresponding output by Y (t, x0, u). Moreover, we assume
mean square asymptotic stability which is

E ∥X(t, x0, 0)∥2
2 → 0 for t → ∞. (2)

Below, we set q = 1 and M := M1, N := N1 for simplicity of
notation. Any of the following results also holds for general q.

2.1. Type 1 balanced truncation

In type 1 BT the idea is to introduce a generalized fundamental
solution to the state Eq. (1) which is a matrix-valued process
(Φ(t))t≥0 definedbyX(t, x0, 0) = Φ(t)x0. This canbeused to define
the Gramians

P :=

∫
∞

0
E

[
Φ(s)BBTΦT (s)

]
ds, (3)

Q :=

∫
∞

0
E

[
ΦT (s)CTCΦ(s)

]
ds.

Following the arguments in Section 3 in [12] we know that the
Gramians are solutions of generalized Lyapunov equations:

AP + PAT
+ NPNT c = −BBT , (4)

ATQ + QA + NTQNc = −CTC, (5)

1 We assume that (Ft )t≥0 is right continuous and thatF0 contains all P null sets.

where c := E
[
M(1)2

]
. Below, we suppose to have a completely

observable and reachable system (1) in terms of the concepts used
in [11] or [12]which implies P ,Q > 0. By Section 3 in [12], we have
the following results:

Proposition 2.1.

(i) The minimal energy to steer the average state to x ∈ Rn is
bounded from below as follows:

xTP−1x ≤ inf
u∈L2T ,T>0,

E[X(T ,0,u)]=x

∥u∥2
L2T

.

(ii) The energy that is caused by the observation of an initial state
x0 ∈ Rn is

∥Y (·, x0, 0)∥2
L2 = xT0Qx0.

Due to the energy interpretation in Proposition 2.1, we consider
the state x to be difficult to reach if the expression xTP−1x is large
and we call it difficult to observe if the term xTQx is small. If the
system is balanced, i.e. P = Q = diag(σ1, . . ., σn), then it is ensured
that the sets of difficult to observe and difficult to reach states
coincide.We can always balance the system as follows.We apply a
state space transformation, which does not change the output, by
using an invertible matrix T :

(A, B, C,N) ↦→
(
TAT−1, TB, CT−1, TNT−1)

which leads to transformed Gramians

(P,Q ) ↦→
(
TPT T , T−TQT−1) .

In order to obtain a balanced realization,we choose T = Σ
1
2 K TU−1

with Σ = diag(σ1, . . ., σn) > 0. U comes from the Cholesky
decomposition of P = UUT and K is an orthogonal matrix corre-
sponding to the singular value decomposition UTQU = KΣ2K T .
This yields

TPT T
= T−TQT−1

= diag(σ1, . . ., σn) > 0.

The HSVs σ1 ≥ σ2 ≥ · · · ≥ σn characterize the importance of a
state, the smaller σi the more difficult to reach and to observe the
corresponding state component. We partition as follows:

T =

[
W T

T T
2

]
and T−1

=
[
V T1

]
,

where W T
∈ Rr×n, V ∈ Rn×r and r represents the reduced order

model (ROM) state space dimension. Then, the ROM coefficients,
obtained by truncation are

(A11, B1, C1,N11) =
(
W TAV ,W TB, CV ,W TNV

)
.

Type 1 balanced truncation preserves mean square asymptotic
stability as shown in Theorem 2.3 in [13].

Theorem 2.2. Let σr ̸= σr+1, then for t ≥ 0 and XR(0) = xR,0 the
ROM

dXR(t) = A11XR(t)dt + N11XR(t−)dM(t)

is mean square asymptotically stable if for t ≥ 0 and X(0) = x0

dX(t) = AX(t)dt + NX(t−)dM(t)

is mean square asymptotically stable.

The result in Theorem 2.2 is essential for the existence of the
ROM reachability Gramian PR :=

∫
∞

0 E
[
ΦR(s)B1BT

1Φ
T
R (s)

]
ds which

occurs in the H2-type error bound below. Here, ΦR denotes the
fundamental solution of the ROM. The matrix PR fulfills

A11PR + PRAT
11 + N11PRNT

11c = −B1BT
1 .
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