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a b s t r a c t

We consider the problem of constructing a controller achieving a desired linear specification, based on a
linear abstraction system of the plant system. First, we extend the necessary and sufficient conditions for
control by interconnection by bisimulation equivalence to the case of non-deterministic linear systems.
Then we apply the controller constructed on the basis of the lower-dimensional abstraction system to
the original plant system and show that the closed-loop system is simulated by the given specification
system. We distinguish between two forms of abstraction of the plant system. In the first one, the set of
variables available for controller interconnection remains the same. In the second,more general form, this
is not anymore the case, and we show how an adapted form of interconnection of the controller system
to the plant system yields the same result.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A basic problem in system and control theory is to construct
a controller such that the closed-loop system behaves exactly
like a given specification system. This general problem has been
explored in various frameworks, see e.g. [1–3] and the references
quoted therein. When dealing with a large-scale plant system the
controller system tends to become high-dimensional as well, pos-
ing severe problems for computation and implementation. One of
themethods to address this complexity problem is to approximate
the linear plant system by a lower-dimensional system. There are
many methods for approximation. In this paper, we approximate
the plant system in the sense that it is simulated by a lower-
dimensional linear system. This is the idea of abstraction [4,5], and
we call this lower-dimensional, but possibly non-deterministic,
systeman abstraction system. Loosely speaking, the abstraction sys-
tem is a lower-dimensional linear systemwhose external behavior
(with respect to a given set of input and output variables) contains
the external behavior of the original system. Next, we want to
apply the controller based on the abstraction system to the plant
system in such away that the closed-loop system approximates the
specification system, where again approximation is formalized as
simulation.

* Corresponding author at: Johann Bernoulli Institute for Mathematics and Com-
puter Science, University of Groningen, 9747AG Groningen, The Netherlands.

E-mail addresses: n.y.megawati@rug.nl, noorma_yulia@ugm.ac.id
(N.Y. Megawati), a.j.van.der.schaft@rug.nl (A. van der Schaft).

A similar problem setting was extensively studied in a number
of papers, see e.g. [6,7] and the references quoted therein, with the
main difference that the abstraction system in these papers is a
discrete transition system. Instead, in the current paper the abstrac-
tion system is again a (lower-dimensional and non-deterministic)
linear system. This allows us to remain completely within the
framework of linear geometric control theory. In [6] the problem
is studied of refining the controller for the discrete abstraction
system in such a way that it can be applied to the plant system.
Furthermore, the notion of alternating simulation relation is used to
relate the plant system and the abstraction system. Examples in [7]
show that the alternating simulation relations are not adequate for
controller refinement whenever the controller has only quantized
or symbolic state information, and the complexity of the refined
controller exceeds the complexity of the controller for the ab-
straction system. Therefore, a novel notion of feedback refinement
relations is proposed to resolve both issues. Moreover, [7] shows
that feedback refinement relations are necessary and sufficient
for controller refinement. The current paper shows that for linear
abstraction systems the problem of applying the controller con-
structed for the abstraction system to the original plant system
admits a direct and elegant solution within the framework of
geometric control theory.

In this paper we consider linear plant systems with two types1
of inputs f and u, and two types of outputs z and y. The first type of

1 Note that in [6,7] the manifest and control variables of the abstraction system
coincide, leading to a less general (and simpler) scenario.
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input f together with the output z describes the interaction of the
system with its environment. We call (f , z) the manifest variables.
The second type of input u and the output y are variables that
are to be connected to the controller system. The variables (u, y)
are called the control variables. Given a linear plant system we
approximate it by a lower-dimensional linear abstraction system.
A preliminary problem studied in this paper consists in finding
a controller for the abstraction system such that the abstraction
system interconnected with the controller system is bisimilar to a
given specification system. This problem extends the ‘control by
interconnection’ problem studied in [3] to linear systems involv-
ing internal disturbances. These internal disturbances are used for
modeling the typical case of ‘non-determinism’ in the abstraction
system. ‘Non-determinism’ means that the state of the system,
starting from a given initial condition, and for a given input func-
tionmay evolve into different time-trajectories.2 Nextwe consider
the problem of applying the controller system derived for the
abstraction system to the original plant system. Here we make a
distinction between the situationwhere the set of control variables
of the abstraction system is equal to the set of control variables,
and themore general situation where this is not anymore the case.
In this last case we need to modify the interconnection of the
controller to the original plant system. The main theorem consists
of showing that the resulting interconnection of the original plant
system and the controller system derived for the abstraction sys-
tem is simulated by the specification system.

The paper uses throughout the framework of ‘control by inter-
connection’ and that of ‘(bi-)simulation’ equivalence. In the control
by interconnection framework the plant system is interconnected
to a controller system via shared control variables. This does not
always correspond to dynamical output feedback, as usually stud-
ied in control theory. On the other hand, certain physical control
mechanisms, as exemplified by the door closing mechanism given
in [9], are not of dynamical output feedback type but do corre-
spond to control by interconnection. Furthermore, we will use the
canonical controller introduced in [2], and further employed in [3]
for control by interconnection by bisimulation equivalence. We
will give more details about control by interconnection and the
canonical controller in Sections 2 and 3, respectively.

With regard to the use of (bi-)simulation we note that there
are many ways to define equivalence between systems. In the
behavioral approach, two systems are equivalent if their behaviors
are equal. In a linear input–output context, two systems are called
equivalent if their transfer matrices are equal. Furthermore, two
state space systems can be called equivalent if there exists an in-
vertible state space transformationmatrix linking the two systems.
The notion of (bi-)simulation relation was first introduced in com-
puter science [10], and later extended to continuous dynamical
systems in [5]; see also [1]. In [4] it was shown how the notion
of bisimulation relation directly extends the classical notions of
transfer matrix equality and state space equivalence. This was
recently extended to linear differential–algebraic (DAE) systems
in [11], which also provides the natural context for (bi-)simulation
using the canonical controller. We will give more details in
Section 2.

This paper is organized as follows. In Section 2, we recall the
basic notions that we need for the rest of the paper such as the def-
inition of interconnection between systems and the notion of (bi)-
simulation relation using geometric control theory. In Section 3,
we deal with the problem of finding a controller for linear systems
with internal disturbances. Then we address the main problem of
applying the controller constructed on the basis of the abstraction

2 We want to emphasize that the problem studied here is fundamentally differ-
ent from the problem studied in [8] where the problem of (behavioral) control by
interconnection of a plant system with external disturbanceswas treated.

system to the original plant system. We start with the case that
the set of control variables of the abstraction system is equal to
that of the plant system, and afterwards we show how this can be
extended to the general case by making use of an adapted form of
interconnection.

2. Preliminaries

In this section, we give definitions of the notions of interconnec-
tion and of (bi-)simulation relations.

2.1. Interconnection

Consider two linear systems

Σi :

ẋi = Aixi + Bu
i ui + Bf

i fi + Gidi, xi ∈ Xi, ui ∈ Ui, fi ∈ F, di ∈ Di
yi = Cy

i xi, yi ∈ Yi
zi = C z

i xi, zi ∈ Z
(1)

where Ai ∈ Rqi×ni , Bu
i ∈ Rqi×ki , Bf

i ∈ Rqi×l,Gi ∈ Rqi×si , Cy
i ∈ Rpi×ni

and C z
i ∈ Rr×ni ; Xi,Ui,F,Di,Yi and Z are finite dimensional

linear spaces, of dimension, respectively ni, ki, l, si, pi and r . Here
xi denotes the state of the system, ui, fi are inputs, di is ‘internal’
disturbance and yi, zi are outputs. The set of allowed time functions
xi : R+

→ Xi, ui : R+
→ Ui, fi : R+

→ F, di : R+
→ Di, yi :

R+
→ Yi and zi : R+

→ Z , with R+
= [0, ∞), will be denoted by

Xi,Ui,F,Di,Yi and Z, respectively. For simplicity of the notation,
we will denote these time functions by xi, ui, fi, di, yi and zi. The
exact choice of function classes is for the purpose of this paper not
really important as long as the state trajectories x(·) are continuous.
For example, we can take all the functions to be piecewise C∞.

Interconnection between two systems with respect to either
manifest variables or control variables will be denoted by m and
c , respectively. In order to allow for more general interconnections
than the standard feedback one, we will use a permutation matrix
Π as formalized in the following definition.

Definition 2.1. LetΣ1 andΣ2 be two systems of the form (1). Their
interconnection through the manifest variables via a permutation
matrix Π , denoted by Σ1∥

Π
mΣ2, is defined

ẋi = Aixi + Bu
i ui + Bf

i fi + Gidi,
yi = Cy

i xi,
zi = C z

i xi, i = 1, 2,[
f1
z1

]
= Π

[
f2
z2

]
.

The interconnection system Σ1∥
Π
mΣ2 is a differential–algebraic

system with algebraic constraints on the state variables (x1, x2).
The state space of this interconnected system, denoted by XΣ1,Σ2 ,
is defined as
{(x1, x2) ∈ XΣ1 × XΣ2 | ∃ input functions u1, u2, f1, f2, disturbance
functions d1, d2 and ∃ solution trajectory(x1(·), x2(·)) such that

(x1(0), x2(0)) = (x1, x2) and
[
f1(t)
z1(t)

]
= Π

[
f2(t)
z2(t)

]
, t ≥ 0, }.

Similarly, the interconnection through the control variables and
a suitable permutation matrix Π is denoted by Σ1∥

Π
c Σ2, where

the first set of equations is as in Definition 2.1, while the state
space of the interconnected system is {(x1, x2) ∈ XΣ1 × XΣ2 |

∃ input functions u1, u2, f1, f2, disturbance functions d1, d2 and ∃

solution trajectories (x1(·), x2(·)) such that (x1(0), x2(0)) = (x1, x2)

and
[
u1(t)
y1(t)

]
= Π

[
u2(t)
y2(t)

]
, t ≥ 0}.

We use the notation (x1(0), u1, y1, f1, z1, d1) ∈ Σ1 to indicate
that starting from an initial condition x1(0), by applying input
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