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a b s t r a c t

We introduce and study collinearity as a systems theoretic property, asking whether coupled dynamical
systems with collinear initial conditions maintain collinear solutions for all times. Completely charac-
terizing such collinear dynamical systems, we find that they define a Lie algebra whose Lie group are
the invertible collinearity-preserving maps. Our characterization of collinear systems then allows us to
determine state feedbacks which enforce collinear solutions in coupled control systems. Further, we
characterize coupled linear differential equations whose solutions will asymptotically become collinear.
Last, we characterize collinearity of multiple dynamical systems and their ability to produce coplanar
solutions. Our findings relate to flows on the real projective spaces and Grassmannians.

© 2017 Elsevier B.V. All rights reserved.

1. Motivation

Every pair of two points uniquely defines a line that passes
through them. If one, in addition, insists that this line shall pass
through the origin, then the two points are said to be collinear.
It is thus fair to say that collinearity is the simplest nongeneric
configuration of two points.

Similarly, every pair of solutions of two (possibly coupled)
differential equations uniquely defines a line, varying with time,
that passes through the two solutions at every instance of time. In-
sisting that this line shall pass through the origin at every instance
of time, i.e. asking for the two solutions to remain collinear for all
times, can thus be seen as the simplest nongeneric configuration
of two solutions.

This reasoning alone would justify to study such collinear so-
lutions for conceptual reasons. But it furthermore happens that
collinearity is relevant inmany technical applications. Since differ-
ential equations usually serve as models in such applications, this,
moreover, provides a practical motivation for studying collinear
solutions.

One application which shall be mentioned in that regard is
laser spectroscopywith end-pumpeddye lasers. Therein, the pump
beam must form a collinear configuration with mirrors and res-
onator (cf. [2, subsection 5.7.5]). Having actuated mirrors, say
piezoelectrically, the goal would be to maintain such a collinear
configuration.

Another application in which collinearity plays a crucial role
is the design of antenna arrays. Should one aim to increase the

✩ The results in this article are partially contained in a paper that was submitted
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power radiated in the plane orthogonal to the array, then one
aligns the antennas in the array collinearly (cf. [3, section 8.4]).
If the antennas were mobile antennas, then the goal would be to
maintain them in such a collinear alignment.

A further motivation to study collinear solutions is to improve
our understanding of the dynamical systems producing these so-
lutions.

One case in which collinear solutions indeed helped to under-
stand a dynamical system is the three-body problem, i.e. the New-
tonianmodel of three heavymasses, mutually exerting gravitation
on each other. Therein, a family of solutions in which the three
bodies remain collinear after having been initialized collinearly,
periodically returning to the initial collinear configuration, was de-
termined by Euler in 1767 (cf. [4, subsection 2.3.3]). Together with
the equilateral solutions later found by Lagrange, these solutions
remain to be fundamental for the understanding of the three-body
problem.

Another example in which collinear solutions contributed to
a better systems theoretic understanding of a system stems from
formation control. Specifically, a research direction sparked by [5]
solves formation control problems by constructing scalar fields
which are maximal at the desired formations and then applying
the gradient of that scalar field as the control action. These scalar
fields are constructed in such a fashion that they are regular al-
most everywhere else, except for certain critical points which only
constitute a set of measure zero. These critical points happen to
be collinear configurations and it follows that the gradient flow
of the proposed scalar field leaves these collinear configurations
invariant, i.e., they do not belong to the region of attraction of the
desired formation.With that reason, these collinear solutionswere
studied in detail in [6] in order to understand the convergence
properties of the control.

http://dx.doi.org/10.1016/j.sysconle.2017.04.008
0167-6911/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.sysconle.2017.04.008
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysconle.2017.04.008&domain=pdf
mailto:jan-maximilian.montenbruck@ist.uni-stuttgart.de
http://dx.doi.org/10.1016/j.sysconle.2017.04.008


J.M. Montenbruck, S. Zeng / Systems & Control Letters 105 (2017) 34–43 35

Fig. 1. The depicted two points in R2 are collinear since they satisfy x2 = −2x1 .
Thus, they lie on the same line passing through the origin.

The above examples demonstrate that collinearity of solutions
in coupled differential equations shall deserve further attention,
for reasons stemming both from technical applications and sys-
tems theory. These observations indeed justify to introduce and
study collinearity as a systems theoretic property, which is the goal
of the present paper (also cf. [1]).

The remainder of this paper is structured as follows: Section 2
comprises the formal problem statement. Thereafter, in Section 3,
we characterize collinear dynamical systems. This characterization
is exploited for the purpose of finding state feedbackswhich render
systems collinear in Section 4. In Section 5,we turn our attention to
systems that asymptotically become collinear. Last, in Section 6,we
study collinearity of multiple systems and coplanarity. Section 7
concludes the paper.

2. Problem statement

Let x1 and x2 be two nonzero vectors from Rn. Then one says
that x1 and x2 are collinear if there is some real scalar α with the
property that

x2 = αx1. (1)

This characterization of collinearity just formally says that the line
that passes through x1 and x2 should also pass through the origin.
For instance, let x1 be (−0.5, −1) and x2 be (1, 2). Then α = −2
scales x1 in such a fashion that (1) remains satisfied, i.e. x1 and
x2 are indeed collinear. As we can infer from Fig. 1, in which x1
and x2 are depicted, the line that passes through x1 and x2 also
passes through the origin. If one is interested in vectors x1 and x2
that share a line with some fixed nonzero p ∈ Rn, then, instead
of (1), one must consider x2 − p = α (x1 − p). In that case, all
techniques in the remainder of the paper are still applicable via
the affine transformation x1 ↦→ x1 + p, x2 ↦→ x2 + p.

Another way to formulate collinearity is that x2 shall lie in the
span {αx1|α ∈ R} of x1, or,more geometrically, that the pair (x1, x2)
shall lie in the vector bundle⨆
x1∈Rn

{αx1|α ∈ R} (2)

over Rn, within which interpretation x1 would be seen as a point
and x2 would be seen as a vector. The bundle (2) is depicted left
in Fig. 2. Yet another interpretation of collinearity stems from real
projective geometry: define the equivalence relation

x1 ∼ x2 :⇔ ∃α ∈ R : x2 = αx1 (3)

and recall that the real projective spaceRPn−1 is the quotient space
consisting of equivalence classes of∼. Then collinearity of x1 and x2
amounts to their equivalence under ∼, i.e. to having them define
the same point in RPn−1. As the last equivalent characterization
of collinearity, consider (1) row-wise, i.e. e⊤

i x2 = αx⊤

1 ei for some

Fig. 2. On the left, the bundle (2) is depicted and on the right, two of the vectors
Ωijx2 , to which x1 must be orthogonal to null the outputs (9), are plotted.

vector ei from the standard basis ofRn. But thatα must be the same
even if ei is replaced by some ej, i.e.

x⊤

1 eje
⊤

i x2 = x⊤

1 eie
⊤

j x2 (4)

must hold for all i and j. The above equivalent characterizations
of collinearity will all help us to characterize collinear dynamical
systems in the course of the paper. Next, we precisely state what
we mean by collinear dynamical systems.

Given a pair of coupled linear differential equations

ẋ1 (t) = A11x1 (t) + A12x2 (t) , x1 (0) ̸= 0, (5)
ẋ2 (t) = A21x1 (t) + A22x2 (t) , x2 (0) ̸= 0, (6)

with all Aij being n × n matrices, we ask whether collinearity of
x1 (0) and x2 (0) is preserved under the flow of (5), (6). More par-
ticular, we say that the dynamical systems (5) and (6) are collinear
if collinearity of their initial conditions causes their solutions to
remain collinear for all times, i.e. if the implication

x2 (0)=α(0) x1 (0) ⇒ ∀t ≥ 0 ∃α(t): x2 (t)=α(t) x1 (t)

holds true. Alternatively, reconsidering the fiber bundle (2), under
which circumstances does the fact that (x1 (0) , x2 (0)) lies in that
bundle imply that (x1 (t) , x2 (t)) remains in that bundle for all t?
In terms of the equivalence relation (3), when does equivalence
of initial conditions cause equivalence of solutions for all times,
i.e., when is

x1 (0) ∼ x2 (0) ⇒ ∀t ≥ 0, x1 (t) ∼ x2 (t) (7)

met? In other words, under which conditions is it possible to have
(5), (6) defining a flow on RPn−1? For, if (5) and (6) are collinear,
then their solutions define the same curve

t ↦→ [x1 (t)] = [x2 (t)] (8)

on RPn−1, wherein [·] denotes an equivalence class of ∼. Last, still
equivalent to the aforementioned definitions of collinear dynami-
cal systems, making use of (4), when do the outputs

yij (t) = x1 (t) · Ωijx2 (t) , Ωij = eie⊤

j − eje⊤

i , j > i, (9)

remain zero if they are initially zero (for a detailed account on such
quadratic outputs, cf. [7] or [8])? Thereby, it shall be emphasized
that the matrices Ωij, j > i, generate the skew-symmetric ma-
trices, i.e. the Lie algebra so (n) of the special orthogonal group,
whence we have that indeed any skew-symmetric bilinear form
in (x1 (t) , x2 (t)) remains zero for t ≥ 0 if it was zero at t = 0.
Two of the vectors Ωijx2, whose inner products with x1 constitute
yij, are depicted right in Fig. 2.

Having multiple equivalent definitions of collinear dynamical
systems at hand, we are now ready to characterize collinear dy-
namical systems in the following section.
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