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a b s t r a c t

Conservation laws and balance equations for physical network systems typically can be describedwith the
aid of the incidencematrix of a directed graph, and an associated symmetric Laplacianmatrix. Some basic
examples are discussed, and the extension to k-complexes is indicated. Physical distribution networks
often involve a non-symmetric Laplacianmatrix. It is shownhow, in case the connected components of the
graph are strongly connected, such systems can be converted into a form with balanced Laplacian matrix
by constructive use of Kirchhoff’s Matrix Tree theorem, giving rise to a port-Hamiltonian description.
Application to the dual case of asymmetric consensus algorithms is given. Finally it is shown how the
minimal storage function for physical network systemswith controlled flows can be explicitly computed.
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1. Introduction

The topic of physical network systems has been always dear
to Jan Willems’ heart, from his early work on network synthesis
and physical systems theory to his seminal work on dissipativity
theory [1,2], and from the initial developments in behavioral
theory to more recent ‘educational’ papers [3,4]. I was often
fortunate to witness these scientific developments from a close
distance, and to be involved in penetrating discussions with Jan.
Many of these animated debates centered around the ‘right’ and
‘ultimate’ definition of the basic concepts. Needless to say that my
own ideas, including the ones presented in this paper, have been
heavily influenced by Jan’s.

The structure of the paper is as follows. In Section 3, after a recap
of basic notions in algebraic graph theory in Section 2, I will discuss
how conservation laws and balance equations for physical network
are often naturally expressed in terms of the incidence matrix of
a directed graph, and how this leads to a well-defined class of
systems involving a symmetric Laplacian matrix. Next, in Section 4,
attention will be directed to a more general class of physical
network systems, of general distribution type, where the Laplacian
matrix is not necessarily symmetric. Under the assumption of
strong connectedness it will be shown howbymeans of Kirchhoff’s
Matrix Tree theorem the system can be constructively converted
into a system with balanced Laplacian matrix, admitting a stability
analysis similar to the symmetric case. Section 5 is devoted to the
analysis of available storage of passive physical network systems; a
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fundamental concept introduced in JanWillems’ seminal paper [1].
Section 6 contains conclusions.

2. Preliminaries about graphs

We recall from e.g. [5,6] a few standard definitions and facts.
A graph G(V, E), is defined by a set V of vertices (nodes) and a
set E of edges (links, branches), where E is identified with a set
of unordered pairs {i, j} of vertices i, j ∈ V . We allow for multiple
edges between vertices, but not for self-loops {i, i}. By endowing
the edgeswith an orientationwe obtain a directed graph. A directed
graphwith n vertices andm edges is specified by its n×m incidence
matrix, denoted by D. Every column of D corresponds to an edge of
the graph, and contains exactly one −1 at the row corresponding
to its tail vertex and one +1 at the row corresponding to its head
vertex, while the other elements are 0. In particular, 1TD = 0
where 1 is the vector of all ones. Furthermore, kerDT

= span1
if and only if the graph is connected (any vertex can be reached
from any other vertex by a sequence of, - undirected -, edges).
In general, the dimension of kerDT is equal to the number of
connected components. A graph is strongly connected if any vertex
can be reached from any other vertex by a sequence of directed
edges. For any diagonal positive semi-definite m × m matrix R we
define a symmetric Laplacian matrix of the graph as L := DRDT ,
where the positive diagonal elements r1, . . . , rm of thematrix R are
the weights of the edges. It is well-known [5] that L is independent
of the orientation of the graph.

The vertex space [7]Λ0 is defined as the set of all functions from
the vertex set V to R. Obviously Λ0 can be identified with Rn. The
dual space ofΛ0 is denoted byΛ0. Furthermore, the edge spaceΛ1
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is defined as the linear space of functions from the edge set E to
R, with dual space denoted by Λ1. Both spaces can be identified
with Rk. It follows that the incidencematrix D defines a linear map
(denoted by the same symbol) D : Λ1 → Λ0 with adjoint map
DT

: Λ0
→ Λ1. Using these abstractions it is straightforward

to extend the physical network dynamics described in this paper
to other spatial domains than R. Indeed, for any linear space R
(e.g., R = R3) we can define Λ0 as the set of functions from V to
R, and Λ1 as the set of functions from E to R. In this case we can
identifyΛ0 with the tensor productRn

⊗R andΛ1 with the tensor
product Rk

⊗ R. Furthermore, the incidence matrix D defines a
linear map D ⊗ I : Λ1 → Λ0, where I is the identity map on R. In
matrix notationD⊗I equals the Kronecker product of the incidence
matrix D and the identity matrix I . See [7] for further details.

3. Physical network systems with symmetric Laplacian matri-
ces

The structure of physical network dynamics is usually based on
conservation laws and balance equations. Given a directed graph G
with incidence matrix D the basic way of expressing conservation
laws is by equations of the form

Df + fS = 0, (1)

where f ∈ Λ1 ≃ Rm is the vector of flows through the edges of
the graph, and fS ∈ Λ0 ≃ Rn is the vector of injected flows at
the vertices. This can be regarded as a generalized form of Kirch-
hoff’s current laws, in which case f denotes the vector of currents
through the edges of the electrical circuit graph, and fS are addi-
tional currents injected at the vertices of the circuit graph.1 Its re-
stricted form is Df = 0 (no flows/currents injected at the vertices).

The injected flows at the vertices either correspond to external
flows or to storage at the vertices, in which latter case there are
state variables xi ∈ R (or, see above, xi belonging to a general linear
space R) associated to each ith vertex, corresponding to ẋ = −fS .
This leads to the differential equations

ẋ = Df , (2)

expressing the basic conservation laws of the system: the sumof the
incoming and outgoing flows through the edges incident to the ith
vertex is equal to the rate of storage at that vertex.

Often, the flows f ∈ Λ1 through the edges are determined by
efforts e ∈ Λ1 associated to the edges, through a resistive relation
of the form f = −R(e), for some map R : Λ1

→ Λ1 satisfying
eTR(e) ≥ 0, which is usually diagonal in the sense that its jth
component only depends on the effort ej associated to the jth edge.
The components of e thus can be regarded as ‘driving forces’ for
the flows f . In the linear case f = −Re with R a diagonal n × n
matrix with nonnegative diagonal elements (in an electrical circuit
context corresponding to conductances of resistors at the edges).

In many cases of interest, the effort variable ej corresponding
to the jth edge is an across variable which is determined by the
difference of effort variables at the vertices incident to that edges,
i.e.,

e = DT eS, (3)

with eS ∈ Λ0 the vector of effort variables at the vertices. This cor-
responds to a balance law or an equilibrium condition: the driving
force ej for the flow through the jth edge is zero whenever the ef-
forts at the vertices incident to this edge are equal. (In an electrical
circuit eS corresponds to the voltage potentials at the vertices, and
e to the voltages across the edges.)

1 Indeed, the presence of flows injected at the vertices is essential in Kirchhoff’s
original paper [8].

Typically2 the efforts eS at the vertices are determined by the
state variables x following

eS =
∂H
∂x

(x), (4)

whereH : Λ0 → R is the total stored energy at the vertices. Usually,
H is an additive energy functionH(x) = H1(x1)+· · ·+Hn(xn). This
leads to the equation

ẋ = −DRDT ∂H
∂x

(x). (5)

The n × n matrix L := DRDT is a symmetric Laplacian matrix,
that is a symmetric matrix with nonnegative diagonal elements
and nonpositive off-diagonal elements whose column and row
sums are zero. Conversely, any symmetric Laplacian matrix can be
represented as L = DRDT for some incidencematrix D and positive
diagonal matrix R. Clearly L is positive semi-definite.

Eq. (5) is the common form of physical network systems with
energy storage confined to the vertices. (See [7] for other cases, in
particular including energy storage associated to the edges.) They
can be immediately seen to be in port-Hamiltonian form. Recall, see
e.g. [9,10], that port-Hamiltonian systemswith inputs and outputs,
in the absence of algebraic constraints and having linear energy-
dissipating relations, are given by equations of the form

ẋ = [J(x) − R(x)]
∂H
∂x

(x) + g(x)u

y = gT (x)
∂H
∂x

(x),
(6)

with J(x) = −JT (x) and R(x) = RT (x) ≥ 0. The system (5)
is obviously port-Hamiltonian (without inputs and outputs) with
J(x) = 0 and R(x) = L = DRDT .

Example 3.1 (Mass–damper Systems). A paradigmatic example of
the above scenario is a linearmass–damper system

ṗ = −DRDTM−1p, (7)

with p the vector of momenta of the masses associated to the
vertices, M the diagonal mass matrix, R the diagonal matrix of
damping coefficients of the dampers attached to the edges, and
H(p) =

1
2p

TM−1p the total kinetic energy of the masses. The
vector of velocities v = M−1p converges to a vector in the kernel
of L = DRDT . In particular, if the graph is weakly connected the
vector v converges to a vector of the form v∗1, with v∗

∈ R (equal
velocities). For extensions tomass–spring–damper systems see [7].

Example 3.2 (Hydraulic Networks). Consider a hydraulic network
between n fluid reservoirs whose storage is described by the
elements of a vector x. Mass balance corresponds to ẋ = Df where
f ∈ Rk is the flow through the k pipes linking the reservoirs. Let
each storage variable xi determine a pressure ∂Hi

∂xi
(xi) for a certain

energy function Hi. Assuming that the flow fj is proportional to
the difference between the pressure of the head reservoir and the
pressure of the tail reservoir this leads to Eq. (5).

Example 3.3 (Symmetric Consensus Algorithms). Eq. (5) for H(x) =
1
2∥x∥

2 reduces to ẋ = −Lx, L = DRDT , which is the standard
symmetric consensus protocol in continuous time, with weights
given by the diagonal elements of R. In Section 4.3 we will pay
attention to asymmetric consensus dynamics.

2 The electrical circuit case is somewhat different, since resistors, inductors, and
capacitors are all associated with the edges, and thus there is no storage at the
vertices. Storage of charge at the vertices would correspond to grounded capacitors,
with the ground node not included in the set of vertices.
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