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a b s t r a c t

In this work, we study the design of a controller using system data. We present three data-driven
approaches based on the notion of control as interconnection. In the first approach, we use both the data
and representations to compute control variable trajectories that impose a prescribed path on the to-be-
controlled variables. The secondmethod is completely data-driven andwe prove sufficient conditions for
determining a controller directly from data. Finally, we show how to determine a controller directly from
data in the case where the control and to-be-controlled variables coincide.
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1. Introduction

Over the years, several authors have proposed different
methods for using system data in the design of a controller.
For example, in [1–3] system data is used to find suitable
control inputs and in [4] data is used to falsify a control law.
Furthermore, data-driven control techniques have been applied
in different applications and processes such as real-time, fault-
tolerant controller design for electrical circuits [5], on-line data-
driven control switching [4] and data-driven fault tolerant control
design, see [6].

In this paper, we show how to find a controller directly using
system data. Our solutions are based on the behavioral framework
like in [3], but we do not assume a priori an input/output partition
of variables. We use the interconnection paradigm, see [7,8]. Most
importantly, in our approach one can also identify a controller
representation under suitable conditions which will be specified,
while in [3] the aimwas to design a control input. Furthermore, we
do not have a prior assumption that the set of admissible control
laws is known, as in [4]. Our solutions are off-line, non-iterative
and summarized by a step-by-step algorithm.

This paper is organized as follows. In Section 2, we cover some
relevant background material. In Section 3, we state formally
the problems solved in this paper. In Sections 4–6, we present
our solutions. In Section 7, we provide some conclusions. All the
necessary lemmas and proofs are gathered in Appendices A and B,
respectively.
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Notation. R, C, Z and Z+ denote the set of real numbers, complex
numbers, integers and positive integers, respectively. The space
of w dimensional real vectors is denoted by Rw and that of g × w
real matrices by Rg×w. When both dimensions are not specified
but finite, we write R•×•. The space of real matrices with g rows
and an infinite number of columns is denoted by Rg×∞. Iw, 0w×w
denotes w× w identity and zero matrices, respectively. colspan(A)

and leftkernel(A) denotes the column span of A ∈ R•×• and the
subspace spanned by all vectors v such that vA = 0, respectively.
col(A, B) is the matrix obtained by stacking A ∈ R•×w over B ∈

R•×w, and col(Ai)i=1,...,l := col(A1, . . . , Al). The ring of polynomials
with real coefficients in the indeterminate ξ is denoted by R[ξ ]

and the set of g × wmatrices in the indeterminate ξ is denoted by
Rg×w

[ξ ]. Let R = R0 + · · · + RLξ
L

∈ Rg×w with RL ≠ 0 then L is
the degree of R and is denoted by deg(R). R ∈ Rg×w

[ξ ], is closely
associated with the coefficient matrix R̃ := [R0 . . . RL 0g×w . . . . . .].
R̃ has an infinite number of columns, which are zero everywhere
except for a finite number of elements. Notice that R =

R̃col(Iw . . . Iwξ L 0 . . .). σRR̃ := [0g×w R0 . . . RL 0g×w . . .] is the right
shift of R̃ and σ k

R R̃ denotes k right shifts of R̃ where k ∈ Z+. The
set of all maps from Z to R is denoted by (R)Z. The collection of all
linear, closed, shift invariant subspaces of (R•)Z equippedwith the
topology of pointwise convergence is denoted byL •. The backward
shift operator σ is defined by (σ f )(t) := f (t + 1).

2. Linear discrete complete system

We define a dynamical system by Σ := (Z, Rw, B) with Z the
time axis, Rw the signal space and B ⊆ (Rw)Z the behavior. Let
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∆ ∈ Z+, then the restriction of B on the interval [1, ∆] is defined
by

B|[1,∆] := {w : [1, ∆] → Rw
|∃ w′

∈ B s.t.w(t)
= w′(t) for all 1 6 t 6 ∆}.

Σ is linear ifB is a linear subspace of (Rw)Z, time-invariant ifσB ⊆

B and complete if [w ∈ B] ⇔ [w|[1,∆] ∈ B|[1,∆] for all ∆ ∈ Z].
Moreover, B ∈ L w if and only if there exists R ∈ Rg×w

[ξ ] such
that B := {w : Z → Rw

|R(σ )w = 0}, i.e. B = ker(R(σ )). R is
called a kernel representation of B and isminimal if no other kernel
representation of B has less than g rows. ΣL := (Z, Rw, Rl, Bfull)
is a dynamical system with latent variables. Bfull is called the full
behavior and consists of all trajectories (w, ℓ) with w a manifest
variable trajectory and ℓ a latent variable trajectory. LetR ∈ Rd×w

[ξ ]

and M ∈ Rd×l
[ξ ] then Bfull ∈ L w+l admits a representation of

the form R(σ )w = M(σ )ℓ, called a hybrid representation. It has
been shown in [9] that Bfull induces amanifest behavior defined by
B := {w ∈ (Rw)Z

| ∃ℓ ∈ (Rl)Z s.t. (w, ℓ) ∈ Bfull}.B is obtained by
using the projection operator πw : (Rw

× Rl)Z
→ (Rw)Z defined

by w := πw(w, ℓ), hence B = πw(Bfull).
Let w1, w2 ∈ B, then B is controllable if there exists t1 ≥ 0 and

w ∈ B such that w(t) = w1(t) for t ≤ 0 and w(t) = w2(t − t1)
for t ≥ t1. Equivalently, B = ker(R(σ )) is controllable if and only
if R(λ) is full row rank for all λ ∈ C. We denote by L w

contr the
collection of all controllable elements of L w. Let (w1, w2) ∈ B,
w2 is observable from w1 if there exists f : (Rw1)Z

→ (Rw2)Z such
thatw2 = f (w1). Let B be described by R1(σ )w1 = R2(σ )w2, with
R1 ∈ Rg×w1 [ξ ] and R2 ∈ Rg×w2 [ξ ], then w2 is observable from w1
if and only if R2(λ) is full column rank for all λ ∈ C, see [10].

B is associated with a number of integer invariants, [10]. The
following are of interest in this paper. Let w ∈ B, then a partition
ofw := (w1, w2) is an input/output partition ifw1 ismaximally free,
i.e.πw1(B) = (R•)Z andw2 contains no free components.w1 is the
input and w2 output. We denote by p(B) and m(B) the output and
input cardinality (the number of outputs or inputs), respectively.
The smallest integer L such that [w|[t,t+L] ∈ B|[t,t+L] for all t ∈

Z] ⇒ [w ∈ B] is called the lag and denoted byL(B).n(B)denotes
theMcMillan degree, i.e. the smallest state-space dimension among
all possible state representations of B. Finally, l(B) denotes the
shortest lag described as follows. Let B = ker(R(σ )) and define
the degree of each row of R to be the largest degree of the entries.
Then the minimum of degrees of the rows of R is the minimal lag
associated with R. l(B) is smallest possible minimal lag over all R
such that B = ker(R(σ )).

2.1. Annihilators and fundamental lemma

The module of annihilators associated with B is defined by
NB := {n ∈ R1×w

[ξ ]|n(σ )B = 0}. If B = ker(R(σ )) then NB

equals the R[ξ ]-submodule of R1×w
[ξ ] generated by the rows of R,

see [11]. We denote the set of annihilators of B of degree less than
j ∈ Z+ by N

j
B := {r ∈ R1×w

[ξ ]|r ∈ NB and r has degree 6 j}. Let
r1, . . . , ri ∈ N

j
B and r̃1 . . . r̃i be the coefficients of r1, . . . , ri; then

Ñ
j
B denotes the set containing r̃1 . . . r̃i.

Definition 1. Let L ∈ Z+. The Hankel matrix associated with a
vectors w(1), . . . , w(T ) for T > L is defined by

HL(w) :=


w(1) w(2) · · · w(T − L + 1)
w(2) w(3) · · · w(T − L + 2)

...
... · · ·

...
w(L) w(L + 1) · · · w(T )

 .

HL,J(w) is the Hankel matrixwith L block rows and J columns.

Definition 2. A vector ũ = ũ(1), ũ(2), . . . , ũ(T ) is persistently
exciting of order L if HL(ũ) is full row rank.

Now we state the ‘‘fundamental lemma’’ cf. [12].

Lemma 1. Assume B ∈ L w
contr . Let w̃ = w̃(1), w̃(2), . . . , w̃(T ) :=

col(ũ, ỹ) ∈ B|[1,T ] such that ũ(k) ∈ Rm(B) is an input and ỹ(k) ∈

Rp(B) an output, for 1 6 k 6 T . Finally, let L ∈ Z+ be such that
L > L(B). If ũ is persistently exciting of order at least L+ n(B), then
colspan(HL(w̃)) = B|[1,L] and leftkernel(HL(w̃)) = ÑL

B.

Proof. See Theorem 1 of [12].

Under the conditions of Lemma 1, then for all w̃′
∈ B|[1,L] there

exists υ̃ ∈ RT−L+1 such that w̃′
= HL(w̃)υ̃ . Moreover, we can

recover from w̃ the laws of the system that generated w̃. This leads
us to the following definition.

Definition 3. w̃ ∈ B is sufficiently informative about B if
colspan(HL(w̃)) = B|[1,L].

2.2. Interconnection

We introduce some relevant concepts of control by intercon-
nection, see [7,8]. Let c and w denote the control and the to-be-
controlled variables, respectively. Let the to-be-controlled plant full
behavior be defined by

Pfull := {(w, c) : Z → Rw
× Rc

| (w, c)
satisfies the plant equations}

and the plant manifest behavior by

πw(Pfull) = P := {w : Z → Rw
|∃ c s.t. (w, c) ∈ Pfull}.

Finally, let a controller acting on the control variables be described
by the control behavior

C := {c : Z → Rc
|c satisfies the controller equations}.

The interconnection of the plant and the controller through the
control variables denoted by Pfull ∧c C is defined by the full
controlled behavior,

Kfull := {(w, c) : Z → Rw
× Rc

|(w, c) ∈ Pfull and c ∈ C}.

Kfull induces amanifest controlled behavior defined by

K := {w : Z → Rw
|∃ c ∈ C s.t. (w, c) ∈ Pfull} = πw(Pfull ∧c C).

K is said to be implementablewith respect toPfull if there exists
a controller C such that K = Pfull ∧c C. It has been proven in
Theorem 1 of [13] that C such that K = Pfull ∧c C exists if and
only if N ⊂ K ⊂ P , where N := {w ∈ P |(w, 0) ∈ Pfull}. In
this paper we are interested in the case when N = 0. Hence, we
assume that any sub-behavior of P is implementable. Moreover, a
special interconnection case of interest, called full interconnection
ariseswhenw = c. Under full interconnection the interconnection
of the plant and the controller throughw is denoted byP ∧w C and
induces a controlled behavior defined by K := {w : Z → Rw

|w ∈

P and w ∈ C}.

3. Problem statements

In this section, we define formally the problems solved in this
paper. Let the to-be-controlled system full behavior be

Pfull = {(w, c)|R1(σ )w = M1(σ )c} (1)
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