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a b s t r a c t

In this paper we continue the exploration started in the joint paper Brockett and Willems (1978) with
a view toward the further development of models for characterizing the limits on energy flow in mixed
thermal–mechanical systems.We put the thermodynamic concept of exergy1 (available energy) in system
theoretic terms and discuss its use as a storage function in the context of input–output models. In
important cases the reachable sets for the systems considered here are not closed and of course this
complicates any discussion of optimality. Only through the consideration of the closure of the reachable
sets can the connection between optimal trajectories of dynamical systems and the basic results of
classical thermodynamics be made tight.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Over the years there has been considerable work generalizing
classical thermodynamics by relaxing the usual assumptions on
reversibility. One goal of such developments is to construct a
theory that includes processes which are carried out in finite
time. A common feature of such efforts is the identification of
thermodynamic processes with trajectories of dynamical systems
with control terms. Papers describing irreversible processes, such
as that described in Orlov and Berry [1], often take this approach.
The paper of Alonso andYdstie [2] adopts amore classical approach
in merging thermodynamics and control, adapting Willems’ ideas
on dissipative systems [3,4] to thermodynamicmodels. Thewidely
cited paper of Kubo [5] links the work of Einstein on Brownian
motion and diffusion to the work of Nyquist and Johnson on noise
in electrical circuits, united under the general framework provided
by the fluctuation–dissipation relationship and a suitable use of
linear response theory.2

E-mail address: brockett@seas.harvard.edu.
1 The term exergy was coined by Zoran Rant in the 1950s. We choose to use it

here instead of one of the other possible names such as available work, available
energy, utilizable energy, etc. because it has a single precise meaning. Willems uses
the term available energy in his major work on dissipative systems (Willems1972a,
1972b) but in a generic way.
2 To a student of linear system theory, linear response theory as used by Kubo can

be thought of as describing matters in terms of input–output behavior, impulse
responses, correlation functions, power spectra, etc., rather than using linear
differential equations as is done in [6].

In the papers [6,7] it is argued that the theory of stochastic
control provides a natural setting for many problems in this area,
especially those involving nonequilibrium phenomena. Expressing
matters in terms of stochastic differential equations, this work
develops some basic thermodynamic ideas starting from linear
stochastic differential equations and uses them to model thermal
reservoirs, formulate a equipartition of energy theorem, etc.
These papers make use of the Nyquist–Johnson [8] description
of electrical noise in a resistors. The resulting equations can
be used to study both transient (irreversible) and steady state
(reversible) behavior. As in this earlier work, we are concerned
here with modeling the behavior of systems in which thermal and
mechanical effects interact. The new results contained in this paper
include:

1. An identification of the role of what is here called infinitesimal
bracketing and the nonexistence of optimal controls for
significant classes of problems relating to thermal–mechanical
systems.

2. A control theoretic model for the generation of mechanical
work from thermal sources and a description of control policies
which generate an amount of work which comes arbitrarily
close to the classical bound.

3. A model for the use of exergy as a storage function for systems
with mixed mechanical and thermal inputs.

2. Quasi-static paths and infinitesimal bracketing

The first law of thermodynamics is stated with no reference to
time and the second law only refers to the directionality of time. At
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important points, classical thermodynamics is constructed around
ideas relating to quasi-static processes. The relationship between
the paths defined by quasi-static processes and trajectories in the
sense of dynamical systems is not part of the theory. In many cases
the paths followed when executing a quasi-static process are not
integral curves of any clearly identified physical system and must
be thought of as a particular kind of limiting form.

We discuss two quite distinct problems arising in this time-
based approach to thermodynamics relating to the nonexistence
of optimal trajectories. The first is that in some situations better
performance can be obtained by extending the time interval
indefinitely. Secondly, for some problems for which Lie bracketing
plays a role, better performance can be obtained by allowing the
total variation of a trajectory to approach infinity; this will be
referred to here as infinitesimal bracketing issue.

2.1. Infinite time intervals (quasistatic processes)

Perhaps the simplest example of this is the following. Consider
the scalar equation ẋ = u; x(0) = 0 and suppose one is to find the
control u defined on the interval [0,∞) such that x(∞) = 1 and
the quantity

η =


∞

0
u2dt

is minimized. This can also be expressed as finding u such that
∞

0
u dt = 1; η =


∞

0
u2 dt = minimum.

This problem has no solution because by setting u = ϵ on [0, 1/ϵ]
one has η = ϵ and this can be made as small as we like but
not zero. This will be referred to here as the L1/L2 issue and will
be considered to be the prototype of a quasi-static optimization
problem in that it fails to have a solution because the limiting
process leads to a situation in which ẋ has to be zero whereas
its integral has to be one. Expressed somewhat differently, if the
equations of motion are

ẋ1 = u; ẋ2 = u2,

then the set of points reachable in infinite time is not a closed set.
Points of the form (x1, x2) = (a, 0)with a ≠ 0 are in the closure of
the set of points reachable from (0, 0) in some finite time but are
not reachable.

2.2. Infinitesimal bracketing

The issue here ismore subtle. As an example, consider the equa-
tions of motion

ẋ = u; ẏ = v; ż = (xv − yu)/2;

with initial conditions x(0) = x0, y(0) = y0, z(0) = 0. Suppose
we are given real numbers a and b such that 0 < b < y0 < a and
that y(t) is subject to a state space constraint

b + kz(t) ≤ y(t) ≤ a − kz(t)

with k > 0. The problem is to choose u and v so as to maximize
z(1). Observe that if at some point b + kz(t) = a − kz(t), i.e., if
z(1) = (a − b)/2k, then z cannot be increased further because
from that point on y is constant and the term xẏ − yẋ integrates
to zero around any closed path. We want to show that there exist
trajectories that steer z(t) from zero to any value of z(1) which is
slightly less than (a−b)/2k. Fig. 1 illustrates a somewhatmore gen-
eral situation in which the bounds on y are non necessarily affine.
On the left it shows y as a function of z. The idea is that it is possi-
ble to increase z(t) by letting x and y trace out a spiral-like motion
consisting of a nested family of thin, vertically aligned, trapezoids.

Fig. 1. Left: Illustrating a portion of a path in z–y-coordinates which generates an
approximation to the limiting value of z. Right: Showing an approximating path in
x–y coordinates.

Take the first of these to be of height a − b and width δ, incorpo-
rating the slight deviation from a rectangle necessary to meet the
constraint on y. Such a trapezoid generates an areawhich is, to first
order in δ, (a−b)δ. Having completed this path, the possible range
for y is reduced to b+k(a−b)δ ≤ y ≤ a−k(a−b)δ, all to first order
in δ. The subsequent trapezoids follow this pattern. In the limit as
δ goes to zero the sum of the areas swept out equals the area of the
triangle shown in Fig. 1 but because of the effect of the constraint
on y, no nonzero width family completely fills the triangle. For ex-
ample, if the sum of the accumulated areas were to completely fill
the triangle both x and y would need to have infinite total varia-
tion. One can consider this to be a problem defined on any interval,
finite or infinite, and the result is the same.

Lemma. Let g1 and g2 be real valued functions, monotone decreasing
and monotone increasing, respectively. Suppose that g1(0) > g2(0)
and suppose that there exists z∗ such that g1(z∗) = g2(z∗). Consider
the system

ẋ = u; ẏ = v; ż = (xv − yu)/2;

with initial conditions x(0) = x0, y(0) = y0, z(0) = 0. Assume that
y(t) is constrained in accordance with

g2(z(t)) ≤ y(t) ≤ g1(z(t));

Then the point x = x(0), y = g1(z∗), z = z∗ is in the closure of the
reachable set.

Proof. Consider cycles of the form shown in the right panel of Fig. 2
with the path constrained to be such that the y-coordinate lies
between the limits defined by g1 and g2 and the x-coordinate is
such that |x(t)− x0| ≤ ∆. Each cycle adds approximately (g2(z)−
g1(z))∆ to z until z is such that g2(z) = g1(z). In the limit as∆ goes
to zero this approximation becomes arbitrarily close to the given
bound. �

More generally, the possibility that the reachable set is not
closed must be considered when investigating any system of the
form ẋ =


gi(x)ui, with or without state space constraints.

3. A stochastic model for basic thermodynamics

Consider the model used in [6,7] to investigate Carnot effi-
ciency. Fig. 2 illustrates a circuit containing a variable capacitor,
two resistors and a three position switch. The resistors are assumed
to be at temperatures T1 and T2, respectively, and to have an associ-
ated thermal noise consistentwith theNyquist–Johnsonmodel [8].
In viewof the central role played by energy, it is natural towrite the
stochastic differential equations describing the situation in terms
of x̂ =

√
cv where c is the (time dependent) value of the capaci-

tance and v is the voltage across the capacitance.Without the noise
term, the description of such a resistor–capacitor circuit is

d
dt

cv = −gv; g = conductance
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