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a b s t r a c t

Classical RLC realization procedures (e.g. Bott–Duffin) result in networks with uncontrollable driving-
point behaviors. With this motivation, we use the behavioral framework of Jan Willems to provide a
rigorous analysis of RLC networks and passive behaviors. We show that the driving-point behavior of a
general RLC network is stabilizable, and controllable if the network contains only two types of elements.
In contrast, we show that the full behavior of the RLC network need not be stabilizable, but is marginally
stabilizable. These results allow us to formalize the phasor approach to RLC networks using the notion of
sinusoidal trajectories, and to address an assumption of conventional phasor analysis. Finally, we show
that any passive behavior with a hybrid representation is stabilizable. This paper relies substantially on
the fundamental work of our late friend and colleague Jan Willems to whom the paper is dedicated.

© 2015 Published by Elsevier B.V.

1. Introduction

Traditionally, questions of synthesis for passive networks have
been framed in terms of achieving a given transfer function at the
driving-point terminals. Brune’s seminal contribution [1] was to
show that a rational function can be realized as the impedance
of a 2-terminal passive network if and only if it is positive-real.
Subsequently, the Bott–Duffin procedure [2], and the reactance
extraction scheme of Youla and Tissi [3], demonstrated that this
result also holds for (two-terminal) RLC networks and multi-
port passive networks, respectively. It has long been observed
that the Bott–Duffin procedure, and its variants [4–7], generate
RLC networks which contain a greater number of energy storage
elements than the McMillan degree of the transfer function to be
realized. Nevertheless, it has recently been established that, for the
realization of certain transfer functions, these networks actually
contain the least possible number of energy storage elements [8,9].
These facts motivate a fundamental treatment of the analysis
of passive networks in a manner appropriate to the study of
this apparent non-minimality. The behavioral approach and the
dissipativity concept of Jan Willems are ideally suited to this task.

One significant contribution of the behavioral approach is
a representation-free definition of the concepts ‘controllability’,
‘stabilizability’, and ‘marginal stabilizability’ (see [10, pp. 70–71]
and Section 2 of this paper). As emphasized in [11, Section 8.2.3],
the transfer function of a system is only sufficient for determining

∗ Corresponding author.
E-mail address: thh22@cam.ac.uk (T.H. Hughes).

its behavior when that behavior is controllable. Indeed, despite
the aforementioned necessary and sufficient conditions on the
transfer functions of passive networks, it is still not known what
are the necessary conditions for a (not necessarily controllable)
behavior to be realized as the driving-point behavior of a passive
network [12, Section 12]. In this paper, we will derive additional
necessary conditions pertaining to the stabilizability of the driving-
point behavior and full behavior of an RLC network, and to the
controllability of the driving-point behavior of any network which
contains only two types of elements (an LC, RC, or RL network).

The structure of the paper, and the key contributions, are as
follows: We begin with some notation and preliminaries in Sec-
tion 2. Throughout Sections 3–6, our focus is on RLC networks,
which we analyze using a combination of the behavioral frame-
work of Jan Willems with graph theory results from [13]. The
approach in these sections is principally algebraic and exploits
the correspondence between linear time-invariant differential sys-
tems and polynomial modules in the manner of Willems [11,10].
With these tools, we show that the driving-point behavior of an
RLC network is necessarily stabilizable (Theorem 2), and con-
trollable when the network contains only two types of elements
(Theorem 3). In contrast, we show that the full behavior of an RLC
network need not be stabilizable, but is necessarily marginally sta-
bilizable (Theorem 4). With these results, we formalize the phasor
analysis of RLC networks using the idea of sinusoidal trajectories,
and address an assumption of conventional phasor analysis (The-
orem 5). Then, in Section 7, we investigate the controllability of
the driving-point and full behavior of the Bott–Duffin networks. Fi-
nally, in Section 8, we adopt a different approach aligned with the
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dissipativity concept of Willems, particularly the representation-
free definition proposed in [12, Section 8], in order to study pas-
sive behaviors in greater generality. In particular, we show that any
passive behavior with a hybrid representation is stabilizable. This
result is applicable to the terminal behavior of any network com-
prising an interconnection of the usual passive elements (resistor,
capacitor, inductor, transformer, gyrator).

2. Notation and preliminaries

In this paper, R (resp. C, Z) will denote the real (resp. complex,
integer) numbers. For z ∈ C, ℜ(z) denotes its real-part. C+

(resp. C−, C̄+, C̄−) denotes the open right half plane (resp. open
left half plane, closed right half plane, closed left half plane).
R[s] and R(s) will denote the space of polynomials and rational
functions with real coefficients, respectively. Rp(s) will denote
the proper (i.e. bounded at infinity) rational functions, and RH∞

will denote the subspace of Rp(s) containing those functions
which are analytic in C̄+. Let F be one of R, C, R[s], R(s), or
Rp(s). Then Fm×n (resp. Fm) denotes the matrices with m rows
and n columns (resp. vectors with m rows) whose entries are
from F, and we write F•×• (resp. F•) when the dimensions are
immaterial. M∗ will denote the Hermitian transpose of M ∈

Cm×n. For D ∈ Cm×m, D ≥ 0 (resp. D ≤ 0) indicates that
D is positive (resp. negative) semidefinite. Im will denote the
identity matrix with m rows and m columns, and the dimension
will occasionally be omitted when it is clear from the context.
Finally, diag


x1 · · · xm


will denote the diagonal matrix whose

diagonal entries are x1, . . . , xm, and col

A1 · · · Am


will denote

the block column matrix col

A1 · · · Am


=

AT
1 · · · AT

m

T .
We say that H ∈ Rn×n(s) is positive-real (PR) if (i) H is analytic

in C+, and (ii) H(ξ)∗ + H(ξ) ≥ 0 for all ξ ∈ C+. Here, (ii)
is equivalent to (iia) H(jω)∗ + H(jω) ≥ 0 for all ω ∈ R with
jω not a pole of any element of H , and (iib) any poles of H on
jR ∪∞ are simple and have a positive semidefinite residue matrix
[14, Thm 2.7.2].

Throughout this paper, we will consider linear time-invariant
differential behaviors in the sense of [11], whichwewill frequently
describe as the kernel of a differential operator R( d

dt ) for some
R ∈ R•×•

[ξ ]. We refer to a particular element of the behavior as
a trajectory. As in [11], we will consider behaviors to comprise tra-
jectories which are locally integrable, i.e. B := {b ∈ Lloc

1 (R, R•) |

R( d
dt )b = 0}. Here, differentiation is interpreted in a weak sense,

and we identify any two locally integrable functions which are
equal except on a set of measure zero (see [11, Section 2.3.2]). We
will denote the subset ofB comprising the infinitely differentiable
trajectories byB ∩C∞ (R, R•) := {b ∈ C∞ (R, R•) | R( d

dt )b = 0},
andwe note that any trajectory inB∩C∞ (R, R•) is also a solution
to R( d

dt )b = 0 in the usual sense [11, Theorem 2.3.11].
If R̃ = UR for some unimodular U , then the sets of locally

integrable functions in the kernels of R( d
dt ) and R̃( d

dt ) are identical
[11, Theorem 2.5.4]. In particular, this enables the elimination of
variables from a behavior B := {b ∈ Lloc

1 (R, R•) | R( d
dt )b =

0}. Suppose b is partitioned as b =: col

d r


, and we wish to

eliminate r from R( d
dt )b =: R1(

d
dt )d+R2(

d
dt )r = 0. By [11, Theorem

2.5.23], there exists a unimodular U =

U1 U2

T such that
UT
1

UT
2


R1 =


D1,1
D2,1


, and


UT
1

UT
2


R2 =


0

D2,2


, (1)

and where D2,2(ξ) has full row rank (equal to the rank of R2(ξ))
for almost all ξ ∈ C. From [15], then the behavior Bd :=

{d ∈ Lloc
1 (R, R•) | ∃r ∈ Lloc

1 (R, R•) which satisfies R1(
d
dt )d +

R2(
d
dt )r = 0} is equal to the set of solutions to D1,1(

d
dt )d = 0

Fig. 1. Passive electrical and mechanical elements.

which satisfy certain smoothness conditions. In some cases Bd =

{d ∈ Lloc
1 (R, R•) | D1,1(

d
dt )d = 0}, in which case we call r properly

eliminable (see [15, Theorems 2.5 and 2.8], which contain criteria
for proper eliminability).

A behavior B is called controllable if for any two trajectories
b1, b2 ∈ B, there exists a t1 ≥ 0 and a b ∈ B which satisfies
b(t) = b1(t) for all t ≤ 0 and b(t) = b2(t) for all t ≥ t1
[11, Definition 5.2.2]. It is called stabilizable if for every b1 ∈ B,
there exists a b ∈ B which satisfies b(t) = b1(t) for all t ≤ 0 and
limt→∞ b(t) = 0; and marginally stabilizable if for every b1 ∈ B,
there exists a t1 ≥ 0 and a b ∈ B which satisfies b(t) = b1(t)
for all t ≤ 0 and b(t) is bounded in t ≥ t1. From [11, Thms 5.2.10
and 5.2.30], whenever R ∈ R•×•

[s], then the behavior B := {b ∈

Lloc
1 (R, R•) | R( d

dt )b = 0} is controllable (resp. stabilizable) if and
only if the rank of R(ξ) is the same for all ξ ∈ C (resp. ξ ∈ C̄+).

Further relevant material is provided as footnotes 1–5.

3. RLC networks and behaviors

In this section, we present explicit and parsimonious descrip-
tions of the full behavior and the driving-point behavior of a given
RLC network.

We define resistors, inductors and capacitors as the idealized
elements shown in Fig. 1. Each such element is associated with a
current i ∈ Lloc

1 (R, R) through the element and a voltage v :=

v+
−v−

∈ Lloc
1 (R, R) across the elementwhich are constrained to

satisfy the corresponding differential equation given in that figure.
We remark that, by identifying force with current and velocity
with voltage, there is a direct analogy between RLC networks and
mechanical networks comprising dampers, springs, and inerters
(see Fig. 1). Consequently, the conclusions of this paper are equally
applicable to the analysis of such mechanical networks.

In Sections 3–6, we restrict attention to RLC ‘one-port’ net-
works. Any such network N has the structure of a connected,
oriented graph1 (hereafter referred to as a graph) with vertices
x1, . . . , xn and edges y1, . . . , ym, and with two designated external
vertices corresponding to the two terminals which constitute the
port of N . Each edge yk represents an element Nk (k = 1, . . . ,m)
which is either a resistor, an inductor, or a capacitor. If all edges
correspond to either inductors or capacitors (resp. resistors or ca-
pacitors, resistors or inductors) then we call N an LC (resp. RC, RL)
network. The edges are oriented so that the current ik throughNk is
from tail to head, and

 t1
t0

ik(t)vk(t)dt is the energy supplied to Nk

1 By a graphwe mean an ordered pair (V , E) where V is a set {x1, . . . , xn} whose
elements are called vertices and E is a set {y1, . . . , yq} of unordered pairs of vertices
called edges, i.e. yk = (xk1 , xk2 ), k = 1, . . . , q [13]. Our definition of connected
follows [13]. In contrast to [13],we allow several edges to join the same twovertices.
A graph is called orientedwhen each edge has one of its vertices arbitrarily assigned
as a head vertex and the other as a tail vertex.
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