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a b s t r a c t

This paper is concerned with optimal control problems for parabolic partial differential equations with
pointwise in time switching constraints on the control. A standard approach to treat constraints in
nonlinear optimization is penalization, in particular using L1-type norms. Applying this approach to the
switching constraint leads to a nonsmooth and nonconvex infinite-dimensional minimization problem
which is challenging both analytically and numerically. AddingH1 regularization or restricting to a finite-
dimensional control space allows showing existence of optimal controls. First-order necessary optimality
conditions are then derived using tools of nonsmooth analysis. Their solution can be computed using a
combination of Moreau–Yosida regularization and a semismooth Newton method. Numerical examples
illustrate the properties of this approach.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Switching control refers to time-dependent optimal control
problems with a vector-valued control of which at most one com-
ponent should be active at any point in time. To partially set the
stage, we consider for example optimal tracking control for a linear
evolution equation yt + Au = Bu on ΩT := (0, T ] × Ω together
with initial conditions y(0) = y0 on Ω , where A is a linear second
order elliptic operator defined on Ω ⊂ Rn with homogeneous
Neumann boundary conditions and the linear control operator B :

L2(0, T ;RN ) → L2(ΩT ) is given by

(Bu)(t, x) =

N∑
i=1

χωi (x)ui(t), (1.1)

whereχωi are the characteristic functions of given control domains
ωi ⊂ Ω of positive measure. Furthermore, let ωobs ⊂ Ω denote
the observation domain and let yd ∈ L2(0, T ; L2(ωobs)) denote the
target. Consider now the standard optimal control problem⎧⎨⎩ min

u∈L2(0,T ;RN )

1
2
∥y − yd∥

2
L2(0,T ;L2(ωobs)) +

α

2

∫ T

0
|u(t)|22 dt,

s. t. yt + Ay = Bu, y(0) = y0,
(1.2)
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where |v|
2
2 =

∑N
j=1v

2
j denotes the squared ℓ2-norm on RN . To

promote the switching structure of optimal controls, we suggest
adding the penalty term

β

∫ T

0

N∑
i,j=1
i<j

|ui(t)uj(t)| dt (1.3)

with β > 0 to the objective, which can be interpreted as an
L1-penalization of the switching constraint ui(t)uj(t) = 0 for i ̸= j
and t ∈ [0, T ]. The combination of control cost and switching
penalty is convex if and only if β ≤ α. The case β = α was investi-
gated in [1]; the aim of this work is to treat the case β > α, which
allows choosing the switching penalty parameter independently
of the control cost parameter. As can be verified for a simple scalar
example, there exist sets of data for which the minimizer of the
convex problem is not switching, while the nonconvex problem
does admit (possibly multiple) minimizers that are switching.

In the nonconvex case, the approach followed in [1] is not ap-
plicable. The main difficulty stems from the fact that the integrand
g : R2

→ R, (u1, u2) ↦→ |u1u2|, is not convex, and hence the
integral functional G : L2(0, T ;R2) → R, u ↦→

∫ T
0 |u1(t)u2(t)| dt , is

not weakly lower semicontinuous, which is an obstacle for proving
existence. It is therefore necessary to enforce strong convergence
of minimizing sequences, which is possible by either considering
piecewise constant and hence finite-dimensional controls or by
introducing an additional (small)H1(0, T ;R2) penalty. Our analysis
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will cover both approaches. Besides the question of existence of
optimal controls, their numerical computation is also challenging
due to the nonconvexity of the problem. Here we proceed as
follows: Using the calculus of Clarke’s generalized derivative [2,3],
we can derive first-order necessary optimality conditions. It then
suffices to apply a Moreau–Yosida regularization only to the non-
smooth but convex term in the optimality conditions in order to
apply a semismooth Newton method.

This is a natural continuation of our previous works [1,4] on
convex relaxation of the switching constraint. Let us briefly remark
on further related literature. On switching control of ordinary and
partial differential equations, there exists a large body of work;
here we only mention [5–7] in the former context and [8–13] in
the latter. A related topic is the control of switched systems, where
we refer to, e.g., [14–16].

This paper is organized as follows. Section 2 is concerned with
existence of optimal controls and their convergence as β → ∞ to
a ‘‘hard switching constrained’’ problem. Optimality conditions are
then derived in Section 3, where the question of exact penalization
is addressed as well. Section 4 discusses the numerical solution
of the optimality conditions using a semismooth Newton method.
Finally, Section 5 presents numerical examples illustrating the
properties of the nonconvex penalty approach.

2. Existence

Here we describe the general framework that will be utilized
andwhichwill contain the example in the Introduction as a special
case. Let W denote a Hilbert space of measurable functions on
the space-time cylinder ΩT = (0, T ] × Ω , where Ω ⊂ Rn is a
bounded domain with Lipschitz continuous boundary. This space
will serve as the state space of the solutions of the control system
which appears as a constraint in (1.2). It is assumed that W ↪→

L2(0, T ; L2(Ω)), and that the embedding is continuous. Further let
U ⊂ L2(0, T ;RN ) denote the Hilbert space of controls. We assume
that there exists an affine control-to-state mapping u ↦→ S(u).
Here,we suppress the dependence of S on y0; for y0 = 0,we denote
the corresponding linear solution operator by S0. Throughout it is
assumed that S satisfies

(a1) S : L2(0, T ;RN ) → W is a continuous mapping satisfying

∥S(u)∥W ≤ C(∥u∥L2(0,T ;RN ) + ∥y0∥L2(Ω))

for a constant C independent of u and y0.

As mentioned in the Introduction, we need to restrict the set of
feasible controls in order to obtain existence of an optimal control.
We thus consider the following two cases for U ⊂ L2(0, T ;RN ):

(i) U = H1(0, T ;RN );
(ii) U is finite-dimensional (e.g., consisting of piecewise con-

stant controls).

For the sake of presentation, we further restrict ourselves in
the following to the case of two control components; the results
remain valid for N > 2 components (although it should be pointed
out that, in contrast to the convex approach in [1], the number of
terms in (1.3) grows as

(N
2

)
). We hence consider for β > α > 0 the

problem

min
u∈U

1
2
∥Su − yd∥

2
L2(0,T ;L2(ωobs)) +

α

2
∥u∥2

L2(0,T ;R2)

+
ε

2
∥ut∥

2
L2(0,T ;R2) + β

∫ T

0
|u1(t)u2(t)| dt (2.1)

with ωobs ⊂ Ω and yd ∈ L2(0, T ; L2(ωobs)) as before. If U is finite-
dimensional, it is understood that ε = 0; otherwise we require

ε > 0. Keeping ε ≥ 0 fixed, we will denote the cost functional in
(2.1) by Jβ .

Before we turn to address existence for (2.1), we describe three
typical cases of interest for which assumption (A1) is satisfied.
Throughout the following, A will denote a linear second-order
uniformly elliptic operator with smooth coefficients.

Distributed control. We return to the case considered in the Intro-
duction, i.e., we consider the equation in (1.2) with A together with
homogeneous Dirichlet, Neumann, or Robin boundary conditions
and the control operator B ∈ L(L2(0, T ;RN ), L2(ΩT )) as in (1.1). It is
then well-known, see, e.g., [17, Chap. 4], that ( A1) is satisfied with
W = W (0, T ) := H1(0, T ; V ∗) ∩ L2(0, T ; V ), where V = H1

0 (Ω)
in the case of homogeneous Dirichlet boundary conditions and
V = H1(Ω) for homogeneous Neumann or Robin conditions.

Neumann boundary control. Here we consider the case of Neu-
mann boundary control. Thus the control system is given by⎧⎪⎪⎨⎪⎪⎩

yt + Ay = 0 in QT ,

∂y
∂n

= Bu on ΣT ,

y(0) = y0 in Ω,

where ΣT := (0, T ]× ∂Ω , and analogous to (1.1) we now take B to
be of the form

(Bu)(t, s) =

2∑
i=1

χωi (s)ui(t),

withχωi the characteristic functions of given control domainsωi ⊂

∂Ω of positive measure relative to ∂Ω . Again, A1 is satisfied, this
time with W = W (0, T ) and V = H1(Ω). For a reference, see,
e.g., [18, Chap. 3.3] and the references given there.

Dirichlet boundary control. Finallywe consider the case of Dirichlet
boundary control given by{yt + Ay = 0 in QT ,

y = Bu on ΣT ,

y(0) = y0 in Ω,

where B is defined as in the case of Neumann control just above.
In this case, A1 can be verified by the method of transposition, and
one arrives at the state space

W = L2(0, T ; L2(Ω)) ∩ H1(0, T ; (H1
0 (Ω) ∩ H2(Ω))∗)

∩C([0, T ];H−1(Ω)).

This was carried out in, e.g., [19, Thm. 2.1] with leading term in A
taken as the Laplacian for simplicity.

Theorem 2.1. There exists a minimizer ū ∈ U to (2.1).

Proof. We first consider the case of U = H1(0, T ;R2). Since Jβ is
bounded from below, there exists a minimizing sequence {un}n∈N
that is bounded in H1(0, T ;R2). Hence, by coercivity of Jβ , there
exists a subsequence, still denoted by {un}n∈N, with un ⇀ ū in
H1(0, T ;R2) andun → ūpointwise in (0, T ). This implies pointwise
convergence of |un,1(t)un,2(t)| → |ū1(t)ū2(t)|. Together with the
continuity of S and the weak lower semicontinuity of norms, this
implies

Jβ (ū) ≤ lim inf
n→∞

Jβ (un) = inf
u∈U

Jβ (u),

i.e., ū is a minimizer.
The case of U finite dimensional follows similarly, since bound-

edness in L2(0, T ;RN ) thendirectly implies strong andhence point-
wise convergence. □
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