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a b s t r a c t

The paper presents finite-dimensional dynamical control systems described by linear fractional-order
state equations with multiple delays in control. The constrained controls are considered. The set of
admissible control values is assumed to be a compact set containing 0, a convex and compact set
containing 0 in its interior, a cone with vertex at zero and a nonempty interior, or a convex and
close cone with nonempty interior and vertex at zero. The definitions of various types of constrained
controllability of the linear fractional systems with delays in control are formulated. New necessary
and sufficient conditions for constrained relative controllability of fractional-order control systems with
delayed controls are established and proved. Numerical examples are provided to illustrate the obtained
theoretical results.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The controllability of dynamical systems is one of the most
important issues in control theory. In general, the controllability
means that it is possible to steer a control system from an initial
state into a final state with the aid of admissible controls. Many
different controllability definitions have been formulated in liter-
ature, which depend on both a class of control systems and a set of
admissible controls. A review of recently analyzed controllability
problems for a wide class of dynamical systems is presented in [1].

In recent decades, the issues addressed in papers concerning the
controllability of dynamical control systems focused on systems
defined by fractional-order differential equations. Fractional-order
models have proven to describe the behavior of many real-life
processes more accurately. Control systems modeled with the use
of fractional differential equations occur, among others, in me-
chanical, biological and chemical problems. Detailed discussions
of fractional differential equations and their practical applications
can be found in the following monographs: [2–8].

The controllability of linear fractional-order control systemshas
been studied in many monographs and papers. The controllability
of discrete-time fractional systems is studied in [9–11], positive
fractional discrete-time systems are discussed in [12], positive
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fractional linear systems, both discrete- and continuous-time, are
presented in [13] and [14]. The controllability of continuous time
linear fractional systems is studied, among others, in [15–21].

In many processes, future states depend on both the present
state andpast states of a system. Thismeans thatmodels describing
the processes involve delays in state or in control. If we have
delays in the input function, we deal with control systems with
delayed controls. In view of the apparent large number of math-
ematical models which describe dynamical systems with delays
in control, solving controllability problems for such systems is
of particular importance. The controllability problems for linear
continuous-time fractional systems with delayed control were
analyzed in [13,14,22–24]. It should be noted, however, that the
majority of papers on linear fractional systems controllability ad-
dress controllability issues for unconstrained controls. The works
on the controllability of fractional systems with bounded inputs
are [25] for fractional positive discrete-time linear systems, [26]
for fractional positive continuous-time linear systems, [27] for
continuous-time linear fractional systems, [28] for systems rep-
resented by fractional integrodifferential equations, and [29] for
linear fractional systems with h-difference fractional operator of
the Caputo type. It needs to be clearly stated that, in practice,
controls are not completely unconstrained. The set of admissible
controls is usually bounded in some way.

Fractional differential equations occur, for example, in math-
ematical models of biological and biochemical models such as:
cancer models [30], population growth models [31,32], models of
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migration of interacting agents [33]. In the majority of biological
models, positive controls are considered.

The aim of the paper is to give new criteria for the constrained
controllability of continuous-time fractional-order control systems
withmultiple delays in control. In [27] some constrained controlla-
bility criteria have been formulated. Themajority of the criteria are
based on the so-called supporting function. In the present paperwe
propose some criteria based on the stability of fractional systems
with delays in control and several ‘‘rank-type’’ controllability crite-
ria. The proposed new criteria are easy to verify, which is shown by
the illustrative examples. However, the most important difference
with the paper [27] is the modification of state space description
of the fractional-order system that takes into account the so-called
internal states, and allows to consider the behavior of the system
in a convenient way.

The paper is organized in the following manner. Section 2
recalls some preliminary definitions, formulas and notations. In
Section 3, the mathematical model of the considered fractional
systems with point delays in control is presented. The formula
for a solution of the discussed systems is presented and some
definitions of constrained relative controllability of the system are
formulated. Constraints are imposed on control values. The main
results of the paper, contained in Section 4, are the criteria for con-
strained relative controllability of the considered fractional system
with delayed controls in the following cases: a set of admissible
control values U is a convex and compact set containing 0 in its
interior, it is a closed and convex cone with nonempty interior
and vertex at zero, it is a cone with vertex at zero and nonempty
interior in the spaceRm, which implies the case of positive controls.
Proofs of the theorems are presented. In Section 5, the theoretical
results are illustratedwithnumerical examples. Finally, concluding
remarks are included in Section 6.

2. Preliminaries and notation

Before we present the system description, we recall some no-
tions concerning fractional-order differential equations. Fractional-
order differentiation is the generalization of the integer-order one.
There are several definitions of fractional-order derivatives, among
others: theGrünwald–Letnikov, theRiemann–Liouville, the Caputo
fractional derivatives [5]. In this paper we use Caputo’s fractional
derivatives.

The Caputo fractional derivative of order α (n < α < n+1, n ∈

N) for a differentiable function f : R+
→ R is defined as

CDα f (t) =
1

Γ (n − α + 1)

∫ t

0

f (n+1)(τ )
(t − τ )α−n dτ ,

where Γ is the gamma function.
It is obvious that for α → n, Caputo’s derivative approaches the

nth order conventional derivative of f , that is limα→n
CDα f (t) =

f (n)(t).
Based on the definition of the Mittag-Leffler function [5,13]

Eα,β (z) =

∞∑
k=0

zk

Γ (αk + β)
, z ∈ C, α > 0, β > 0,

for an arbitrary nth order square matrix Awe can give the formula
for a pseudo-transition matrix Φ0(t) of the linear fractional system
CDαx(t) = Ax(t) [8,13]

Φ0(t) = Eα,1(Atα) =

∞∑
k=0

Aktαk

Γ (kα + 1)
.

Moreover, let

Φ(t) = tα−1Eα,α(Atα) = tα−1
∞∑
k=0

Aktαk

Γ ((k + 1)α)
.

For α = 1 we obtain the classical transition matrix of ordinary
differential equations

Φ0(t) =

∞∑
k=0

Aktk

Γ (k + 1)
=

∞∑
k=0

(At)k

k!
= eAt .

Therefore the pseudo-transitionmatrixΦ0(t) is also called thema-
trix α-exponential function and is denoted by Φ0(t) = eAtα [6,13].

The following notation is used throughout the paper. Let
L2([0, ∞),Rm) denote the Hilbert spaces of square integrable
functions with values in Rm, and L2loc([0, ∞),Rm) denote the lin-
ear space of locally square integrable functions with values in
Rm whereas L∞([0, T ],U) means the Banach space of functions
bounded almost everywhere, defined on [0, T ] with values in U .

3. System description

In the paper the linear control systems with multiple delays
in control described by the following fractional-order differential
state equation are studied.

CDαx(t) = A x(t) +

M∑
i=0

Bi u(t − hi) (1)

for t ≥ 0 and 0 < α < 1, where

• x(t) ∈ Rn is a state vector,
• u ∈ L2loc([0, ∞),Rm) is a control,
• A is a (n × n)-matrix with real elements,
• Bi are (n × m)-matrices with real elements for i = 0,

1, . . . ,M ,
• hi ∈ R, i = 1, 2, . . . ,M are constant point delays in control

that satisfy the following inequalities

0 = h0 < h1 < · · · < hi < · · · < hM−1 < hM .

The works [34–37] on initialization in fractional-order systems
show that initial conditions are not taken into account in the same
way when Riemann–Liouville or Caputo definitions of fractional
derivatives are considered.Moreover, in [38–43] it has been shown
that the Caputo definition does not permit to take into account
initial conditions in a coherent way, because it does not permit to
consider in a convenient way the physical behavior of the system.

The state vector x(t) of the system (1) is called pseudo state
(see: [43,44]), because it is the following weight integral

x(t) =

∫
∞

0
µα(ω)zC (ω, t)dω,

where the internal state zC (ω, t) is the true state of the system and
µα(ω) =

sinαπ
π

ω−α [45].
Therefore, we introduce a supplementary term corresponding

to the internal state of a specific fractional integrator [45]. For the
Caputo derivative we have

CDαx(t) = I1−α

(dx(t)
dt

)
,

where I1−α(·) represents the fractional integrationwith order 1−α.
Let zC (ω, t) be the internal state of the integrator I1−α(·). Then the
revised Laplace transform of CDαx(t) takes the form

L
[
CDαx(t)

]
= sαL[x(t)] − sα−1x(0) +

∫
∞

0

µ1−α(ω)zC (ω, 0)
s + ω

dω.

Hence, the initial conditions of Caputo’s derivative are x(0) and
zC (ω, 0).

Remark 3.1. In [46,47] it was shown that fractional models
are physically inconsistent models. However, the fractional-order
models have similar properties as systems with delays. In both,
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