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a b s t r a c t

This paper is concerned with the problem of determining basis matrices for the supremal output-nulling,
reachability and stabilizability subspaces, and the simultaneous computation of the associated friends
that place the assignable closed-loop eigenvalues at desired locations. Our aim is to show that the
Moore–Laub algorithm in Moore and Laub (1978) for the computation of these subspaces was stated
under unnecessary restrictive assumptions.We prove the same result under virtually no system-theoretic
hypotheses. This provides a theoretical foundation to a range of recent geometric techniques that are
more efficient and robust, and as general as the standard ones based on the computation of sequences of
subspaces.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

One of the central notions of geometric control theory is the
one of output-nulling subspaces. In the past forty years, these
subspaces and their duals have been found to play a fundamental
role in an impressive number of control and estimation problems,
includingdisturbance decoupling [1], non-interacting control [2,3],
model matching [4], optimal control and filtering [5,6], unknown-
input observation [7,8], fault detection [9], and patterned sys-
tems [10].

The three most important output-nulling subspaces used in all
these problems (along with their duals) are:

• V ⋆, which represents the initial states of an LTI system for
which there exists a control function that maintains the
output identically at zero;

• R⋆, which is the set of states that are reachable from the
origin by means of a suitable control function that simul-
taneously maintains the output at zero;

• V ⋆
g , which represents the initial states for which there exists

a control function that maintains the output identically at
zero and at the same time ensures that the state of the
system converges asymptotically to the origin.

A key feature of these subspaces is that the control functions
that achieve the corresponding defining properties can always be
expressed in terms of a static state feedback u = F x, where
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the feedback matrix F is referred to as a friend of the associated
output-nulling subspace. Obtaining a basis for the subspace V ⋆

g
requires eigenspace computations [2,8]. On the contrary, basis
matrices for the other two subspaces can be obtained in finite
terms by resorting to sequences of subspaces that are guaranteed
to converge in a finite number of steps, which is not greater than
the order of the system. Once a basis has been obtained, the second
problem is usually the calculation of a friend F that has desirable
closed-loop properties. In fact, the choice of the friend F is not
unique, and enables some parts of the closed-loop spectrum to be
arbitrarily assigned. A fundamental result that showed that some
alternative methods can be used to compute basis matrices for
the aforementioned output-nulling subspaces is the one that will
be referred to here as the Moore and Laub algorithm of [11]. This
algorithm, unlike the classical methods, does not use a sequence
of subspaces, but hinges on the calculation of null-spaces of the
associated Rosenbrock system matrix pencil. It was shown in [11]
that the use of this algorithm is the key to find significant compu-
tational improvements in the calculation of basis matrices for the
main controlled invariant subspaces of geometric control.

In a recent paper [12], the algorithm of Moore and Laub was
shown to be adaptable to the case in which the friend is sought
to also assign the closed-loop eigenstructure that is external to R⋆

(or V ⋆, or V ⋆
g ), by deriving a parametric form for all the friends

that assign any desired inner and outer closed-loop free spectrum.
The consequent degrees of freedom can therefore be exploited
to derive an algorithm that allows to obtain a friend that – in
addition to placing the desired assignable closed-loop eigenvalues
at arbitrary locations – also minimizes the Frobenius condition
number of the matrix of closed-loop eigenvectors, which is a com-
monly used robustness measure, or that minimizes the Frobenius
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norm of the friend itself. It was also shown in [12] via extended
Monte Carlo simulations that the method based on the parametric
form derived from the Moore and Laub algorithm dramatically
improves eigenvalue insensitivity to parameter uncertainties, with
significantly smaller gain and vastly improved accuracy (by some
orders ofmagnitude) than the friends obtained from the only other
two publicly available MATLAB

R⃝

toolboxes GA and Linear Systems
Toolkit of [3] and [13], respectively.

The results in [11] have also been used in a number of contexts,
including fault detection and tracking control, see [9,14].

Despite the wealth of results and contributions that in the past
thirty years have cited [11] for its breakthrough in terms of the
computation of R⋆ and V ⋆, so far there have not been further
developments on the method proposed in [11]. This is somewhat
surprising, considering the fact that the main result of [11], which
is Proposition 4, has been presented under a set of unnecessary
restrictive assumptions. First, only the strictly proper case was
addressed in [11]. Moreover, matrix B was assumed to be of full
column rank, and the cardinality of the (distinct) set of eigenvalues
L used to construct a basis for R⋆ (which eventually appear as the
closed-loop spectrum restricted to R⋆) was assumed in [11] to be
greater than or equal to the dimension of R⋆. Furthermore, this set
was also constrained not to contain elements whose real part is
an invariant zero of the system. We will present and prove this
result without the need for any of these assumptions. We will also
address another delicate issue, which remained unsolved in [11],
but which is crucial in the construction of an algorithm based on
this result: the statement of Proposition 4 requires the knowledge
of the dimension of R⋆, which is the subspace whose basis we seek
to construct. This dependence of the construction method on the
size of R⋆ creates a logical loop that raises some doubts on the
effectiveness of Proposition 4 as an algorithm for the calculation of
a basis for R⋆. We show in this paper that, while the dimension of
R⋆ is used in the statement of this result, because such dimension
provides an indication on the number of eigenvalues in the set of
closed-loop eigenvalues to be assigned, this is not an obstacle to
the construction of an algorithm that computes a basis for R⋆ in
finite terms.

In the last part of the paper, we remove the last restriction
of [11] which requires L to contain distinct elements. We show
in particular that the statement of [11, Proposition 4] still holds
if the multiplicity of the values of L are such that the closed-
loop matrix is non-defective. However, in the defective case, the
procedure in [11, Proposition 4] cannot generate the entire R⋆. We
show here that there is no trivial generalization for the procedure
of [11, Proposition 4] to address the defective case, in particular in
the presence of Jordan chains related to the invariant zeros of the
system, and we propose an algorithm to overcome this limitation.
The importance of this procedure is not only theoretical. Indeed,
a further advantage of employing the null-spaces of the Rosen-
brock matrix for the calculation of output-nulling subspaces lies in
the simultaneous calculation, as a by-product, of a corresponding
friend that assigns the eigenstructure given in the (multi)set L .
Thus, a generalization of [11, Proposition 4] to the defective case
yields an algorithm for the computation of a friend of R⋆ (and,
considering also the contribution of the invariant zeros, of V ⋆

and V ⋆
g ) which assigns the eigenvalues of the closed-loop matrix

restricted to R⋆ with any desired multiplicity and any admissible
Jordan structure. However, a second even more delicate issue will
be addressed. While the construction of a spanning set for R⋆

and V ⋆ is essentially the same in the case of distinct closed-loop
eigenvalues, when we have repeated eigenvalues a fundamental
difference arises in the way bases for R⋆ and V ⋆ are obtained;
this is due to the fact that the Jordan chains relative to the in-
variant zeros cannot be constructed starting from any vector of
the corresponding eigenspace, but, in general, the chains need to

start from only specific directions of that eigenspace. A method is
presented to select the vector that can be used as starting point of
a Jordan chain. This issue has not been considered in [15], where
no distinction was made in the Jordan chains constructed from
invariant zeros and from values different from invariant zeros.
Therefore, the matrices Hi in [15, Theorem 4] are not completely
free in general, but have to satisfy a further constraint (the one
imposing that the vectors can indeed generate the entire Jordan
chain) which will be discussed here.

The results presented in this paper also validate a number of
geometric methods that in the past thirty years have been pub-
lished, which hinge on the algorithm of [11] without acknowl-
edging its limitations. In particular, this extension guarantees that
the results in [15] indeed allow to compute a friend of R⋆ and V ⋆

with the desired admissible Jordan structure. This paper provides
the theoretical foundation for the numerical methods developed
in [15]. These methods can be effectively used to compute output-
nulling bases and friends also in the presence of non-trivial Jordan
forms, despite the well-known numerical issues associated with
the defective case.

Indeed, the determination of the Jordan form of a defective
matrix is awell-known computational challenge. Nevertheless, the
methods based on the calculation of the null-space of the reacha-
bility matrix pencil for the pole placement and of the Rosenbrock
matrix pencil for the output nulling problem have been shown to
produce numerically stable feedback matrices, [15,16].

While avoiding ill-conditioned problems may be possible for
the assignable part of the closed-loop spectrum, situations involv-
ing defective zero structures require a general, systematic frame-
work to deal with non-trivial Jordan forms.

In the proof of the exhaustiveness of the parameterization
of the friends of R⋆ of Theorem 1 in [12], the authors invoked
[11, Proposition 4], but did not restrict their result to the same set
of assumptions. The same issue arises in the proof of Theorem 3
of [15].

Notation. Throughout this paper, the symbol 0q will stand for the
origin of the vector spaceRq. For convenience, a linearmapping be-
tween finite-dimensional spaces and a matrix representation with
respect to a particular basis are not distinguished notationally. The
image and the kernel of matrix A are denoted by im A and ker A,
respectively. The Moore–Penrose pseudo-inverse of A is denoted
by A†. The spectrum of a square matrix A, denoted by σ (A), is the
multi-set of the eigenvalues of A counting multiplicities. Given a
linearmap A : X −→ Y and a subspaceS ofY , the symbol A−1 S

stands for the inverse image of S with respect to the linear map A,
i.e., A−1 S = {x ∈ X | A x ∈ S }. If J ⊆ X , the restriction of the
mapA toJ is denoted byA |J . IfX = Y andJ isA-invariant, the
eigenvalues of A restricted toJ are denoted by σ (A |J ). IfJ1 and
J2 areA-invariant subspaces andJ1 ⊆ J2, themapping induced
by A on the quotient space J2/J1 is denoted by A |J2/J1, and
its spectrum is denoted by σ (A |J2/J1). The symbol ⊕ stands
for the direct sum of subspaces. The symbol ⊎ denotes multi-
set aggregation, i.e., union with any common elements repeated.
Given a map A : X −→ X and a subspace B of X , we denote by
⟨A | B⟩ the smallest A-invariant subspace of X containing B. The
symbol i stands for the imaginary unit, i.e., i =

√
−1. The symbolα∗

denotes the complex conjugate of α ∈ C. Finally, given amatrixM ,
we denote byMi its ith row and byM j its jth column, respectively.

2. Geometric preliminaries

In what follows, whether the underlying system evolves in
continuous or discrete time is irrelevant. Accordingly, we denote
byT the time index set of any signal, on the understanding that this
represents either R+ in the continuous time or N in the discrete
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