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a b s t r a c t

This paper concerns a class of functions, named cost-to-travel functions,which find applications inmodel-
based control. For a given (potentially nonlinear) control system, the cost-to-travel function associates
with any given start and end point in the state space and any given travel duration theminimumeconomic
cost of the associated point-to-point motion. Cost-to-travel functions are a generalization of cost-to-go
functions, which are often used in the context of dynamic programming as well as model predictive
control. We discuss the properties of cost-to-travel functions, their relations to existing concepts in
control such as dissipativity, but also a variety of control-theoretic applications of this function class.
In particular, we discuss how cost-to-travel functions can be used to analyze the properties of economic
model predictive control with return constraints.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Optimal control as well as model predictive control theory
are well-established fields of research that are covered by many
modern textbooks [1–3]. The foundations of optimal control theory
go back to thework of Bellman [4], Pontryagin [5], and Filippov [6].
Bellman’s principle of optimality is the basis for dynamic program-
ming algorithms, which construct the optimal value function, also
called ‘‘cost-to-go function’’, of an optimal control problem by a
backward recursion [4,7]. Cost-to-go functions are the solution of
the Hamilton–Jacobi–Bellman equation [7] and can be used as a
starting point for deriving Pontryagin’s maximum principle [1,5].

Cost-to-go functions can also be considered as an important tool
for analyzing closed-loop systems. For example, quadratic cost-to-
go functions can be used to derive closed-loop optimal control laws
for linear systems leading to the famous linear quadratic regulator
(LQR) [2]. Moreover, modern model predictive control theory [3]
frequently uses cost-to-go functions as Lyapunov function candi-
dates that can be used to derive a number of stability results for
model predictive control with tracking objectives under additional
controllability assumptions with or without terminal costs and
constraints [8,9].

In recent years, so-called economic MPC schemes have received
significant attention. Here, the primary control objective is not
the stabilization of an a priori given setpoint or trajectory as in
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tracking MPC, but the optimization of a general performance cri-
terion [10–12]. In such economic MPC schemes, certain dissipa-
tivity conditions have turned out to play a crucial role, both for
classifying the optimal operating behavior for a given system as
well as for establishing closed-loop convergence and performance
guarantees [10,11,13,14]. The notion of dissipativity goes back to
Willems [15] and it was already shown in these early results [15]
(compare also [16]) that dissipativity can – at least in principle – be
characterized via cost-to-go functions of suitably defined optimal
control problems.

The goal of this letter is to propose a new type of functions,
named ‘‘cost-to-travel functions’’. Cost-to-travel functions can be
viewed as a generalization of cost-to-go functions, which open
new perspectives on the above mentioned existing control theory
results. The main contributions can be outlined as follows.

• Section 3.1 introduces a functional equation for cost-to-
travel functions, which is summarized in Proposition 1 and
which can be used to construct double-sided dynamic pro-
gramming algorithms for solving time-autonomous optimal
control problems to global optimality. The run-time com-
plexity of double-sided dynamic programming is propor-
tional to the logarithm of the time horizon of the given
optimal control problem.

• Theorem 1 exploits the properties of cost-to-travel func-
tions in order to provide an alternative, elegant proof of a
result that has originally been established in [17], namely
that for any linear system with strictly convex stage-cost
and convex constraints every optimal periodic orbit is a
steady-state.
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• Theorem 2 establishes an alternative characterization of a
certain dissipativity condition for general (potentially non-
linear) control systems, which is crucial in economic MPC.

• Theorem 3 and the associated Lemma 1 establish (under
a mild controllability assumption) necessary and sufficient
conditions to check whether a given optimalm-periodic or-
bit of a time-autonomous control system is optimal among
all N-periodic orbits with N ∈ N.

• Theorem 4 establishes conditions under which local asymp-
totic orbital stability of economic MPC with return con-
straints can be verified. The corresponding proof uses the
fact that the closed-loop state-trajectories of economic MPC
with return constraints are equal to selected iterates of
a block-coordinate descent method applied to minimize a
particularly defined ‘‘cost-of-a-round-trip function’’.

Notation.

We use the symbols R and N to denote the set of real numbers
and strictly positive integers, respectively. The notation N0 = N ∪

{0} denotes the set of positive integers including 0.

2. Cost-to-travel function

Let f : Rnx × Rnu → Rnx be a given continuous right-hand side
function, l : Rnx ×Rnu → R a given continuous stage cost,X ⊆ Rnx

a closed set modeling state constraints, andU ⊆ Rnu a compact set
modeling control constraints. The cost-to-travel function

V : Rnx × Rnx × N0 → R ∪ {∞}

is defined as the optimal value of the optimization problem

V (a, b,N) = min
x,u

N−1∑
k=0

l(xk, uk)

s.t.

⎧⎪⎨⎪⎩
∀k ∈ {0, 1, . . . ,N − 1},
xk+1 = f (xk, uk)
xk ∈ X, uk ∈ U
x0 = a, b = xN ∈ X

(1)

for all a, b ∈ Rnx and all strictly positive integers N ∈ N as well as

V (a, b, 0) =

{
0 if a = b ∈ X
∞ otherwise.

Here, xk and uk denote the state and control of the discrete-time
system f at time k. Since the functions f and l are continuous,
the set X closed, and the set U compact, Problem (1) either has
a minimizer or is infeasible. If Problem (1) is infeasible, we set
V (a, b,N) = ∞ such that V is well-defined for all points a, b ∈ Rnx

and all N ∈ N0. Notice that this implies that N-step controlla-
bility (under constraints) from a to b is equivalent to requiring
V (a, b,N) < ∞. The function V (a, b,N) can be interpreted as the
minimum cost that is needed to bring the system from state a to
state b in time N .

2.1. Cost-to-go function

The cost-to-travel function V is closely related to the so-called
cost-to-go function J : Rnx ×N0 → R. For the case thatm : Rnx →

R is a given continuous terminal cost, the cost-to-go function is
defined as

J(a,N) = min
b

V (a, b,N) + m(b)

for all a ∈ Rnx and all N ∈ N0. Here, the motivation for introducing
the end costm depends on the context. In standard optimal control
m is used to model cost contributions that depend on the terminal

state only, while in model predictive control the motivation for
introducing m is to approximate the infinite horizon cost and to
enforce stability of the resulting closed-loop system [3,18]. Here,
the infinite horizon cost-to-go function is typically defined as

J∞(a) = lim
N→∞

min
b

V (a, b,N), (2)

if this limit exists.

2.2. Guiding example

Throughout this paper, the guiding example

f (x, u) = x + u, X = [−2, 2],
l(x, u) = x2 − |u|, U = [−4, 4] (3)

is used in order to illustrate some of the theoretical developments.
Notice that the one-step cost-to-travel function has the explicit
form

V (a, b, 1) =

{
a2 − |a − b| if a, b ∈ [−2, 2]
∞ otherwise. (4)

Moreover, we have

lim
N→∞

min
b

V (a, b,N) =

{
−∞ if a ∈ [−2, 2]
+∞ otherwise

for this example, i.e., the standard cost-to-go function does not take
finite values without further modification.

3. Properties of cost-to-travel functions

3.1. Functional equation

The cost-to-travel function V satisfies ‘‘Bellman’s principle of
optimality’’ [4], which yields a double-sided dynamic program-
ming recursion:

Proposition 1. The cost-to-travel function V satisfies a functional
recursion of the form

V (a, b,N + M) = min
c

V (a, c,N) + V (c, b,M) (5)

for all a, b ∈ Rnx and all N,M ∈ N0.

Proof. The cost of traveling from a to b via c in N + M steps is
always larger than or equal to the cost to travel from a to bwithout
necessarily visiting c , but we can always find a way-point c for
which equality holds [4]. □

Example 1. For the guiding example (3), the functional equa-
tion (5) yields

V (a, b, 2)
= min

c
V (a, c, 1) + V (c, b, 1)

= min
c

a2 + c2 − |a − c| − |b − c|

= a2 + min{ −|a − 1| − |b − 1| + 1, −|a| − |b|,
− |a + 1| − |b + 1| + 1}

(6)

for all a, b ∈ [−2, 2].

Notice, that if the time horizon of the discrete time optimal
control problem

min
x,u

N−1∑
k=0

l(xk, uk) + m(xN )

s.t.

⎧⎪⎨⎪⎩
∀k ∈ {0, 1, . . . ,N − 1},
xk+1 = f (xk, uk)
x0 = x̂0
xk ∈ X, uk ∈ U

(7)
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