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a b s t r a c t

In this paper, we study the filter consistency of discrete-time nonlinear systemswith partially-observable
measurements, where the full state is not reconstructable from the available measurements at each
time step. Linearized filters such as the extended Kalman filter (EKF) which are realized based on the
corresponding linearized systems, may become inconsistent. Relying on a novel decomposition of the
observability matrix based on different measurement sources, we show that the filter acquires spurious
information from the measurements of each source, which erroneously reduces the uncertainty of the
state estimates and hence causes inconsistency. Based on this key insight, we propose an information-
aware methodology and develop two novel EKF algorithms of computing filter Jacobians which ensure
that all decompositions of the observability matrix have nullspace of correct dimensions. In the first,
the linearization points are selected so as to minimize their expected linearization errors under the
constraints that the decompositions of the observability matrix have correct nullspace. In the second,
we project the canonical measurement Jacobian onto the actual information-available directions. The
proposed approaches are shown to significantly outperform the canonical EKF in the particular application
of radar-based target tracking.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

An issue of concernwith nonlinear estimation problems such as
target tracking [1] is the filter inconsistency—that is, no provably
consistent estimator can be constructed for a nonlinear system,
and the consistency of every filter has to be evaluated experi-
mentally. As defined in [2], a filter is consistent if its estimation
errors are zero-mean and its covariance is equal to the true co-
variance. Consistency is one of the primary criteria for evaluating
the performance of any filter, since if the filter is inconsistent,
then its estimation accuracy is unknown, which in turn makes the
filter unreliable. To date, the problem of estimation inconsistency
has been studied primarily in robotics for simultaneous localiza-
tion and mapping (SLAM) systems that are unobservable [3–6].
In particular, in our prior work [5], we have identified the ob-
servability mismatch between the EKF linearized system and the
underlying nonlinear SLAM system as one main cause for the filter
inconsistency; and based on this, have developed an observability-
constrained (OC)-EKF to improve the particular EKF-SLAM
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consistency. However, little is known about the causes of fil-
ter inconsistency for general observable systems with partially-
observable measurements.

To bridge this gap, in this paper, building upon our prior con-
ference publication [7], we investigate the problem of filter in-
consistency for a broad class of discrete-time nonlinear systems
from a new information perspective, i.e., by examining the direc-
tions of the state space along which the information is actually
available from themeasurements of each source (sensor). Based on
this analysis, we propose a novel information-aware methodology
to improve consistency by ensuring that the filter acquires the
information from each source’s measurements along the correct
directions of the state space.

Specifically, the Fisher information matrix (FIM) [2] of a set of
measurements encapsulates all the available information about
the entire state of a stochastic system. By marginalizing all but
the initial state, we obtain the corresponding FIM that contains
all the information available in the measurements for determining
the initial state. Studying the FIM’s structure reveals the directions
along which the information is (un)available from the measure-
ments. These can be exploited in the design of consistent filtering
algorithms, i.e., by enforcing filters to gain information from mea-
surements only along the ‘‘correct’’ directions (where information
is actually available). Moreover, we analytically show that the FIM
of the initial state can be factorized in terms of the observability
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matrix of the corresponding deterministic system. Based on this
key finding, and to improve consistency, we propose to impose
the constraint of acquiring information along the correct direc-
tions on the resulting decompositions (with respect to different
measurement sources) of the observability matrix, instead of the
FIM. To this end, we introduce two different EKFs that compute
the appropriate filter Jacobians, either directly (i.e., by projecting
the canonical Jacobians onto the information-available subspace)
or indirectly (i.e., by first finding optimal linearization points). As
a result, the filters only gain the information actually available
from each source’s measurements, and thus substantially improve
consistency and accuracy, as opposed to the canonical EKF.

The remainder of the paper is structured as follows: After pre-
senting our information-aware methodology in the next section,
we demonstrate the proposed approach in the radar-tracking ap-
plication in Section 3, and its performance is validated through
Monte-Carlo simulations. Finally, Section 4 outlines the main con-
clusions of this work.

2. Information-aware methodology

Consider the following discrete-time nonlinear system:

xk+1 = f(xk,uk) + wk (1)
zi,k = h(xk, si,k) + vi,k , i ∈ {1, . . . , s} (2)

where xk ∈ Rn denotes the state of the system, uk ∈ Rη is the
control input, and wk ∈ Rn is zero-mean white Gaussian process
noise, i.e., wk ∼ N (0,Qk). zi,k ∈ Rm is the measurement taken
from the ith (i ∈ {1, . . . , s}) measurement source (e.g., sensor),
and is generally (althoughnot necessarily) of lower dimension than
the state vector (i.e., m < n), which is the partially-observable
case as considered in this work. The parameter si,k denotes the
known parameters of the ith measurement source, such as the
sensor’s location or a binary indicator of the availability of the ith
measurement. The random variable vi,k ∈ Rm is zero-mean white
Gaussian measurement noise, i.e., vi,k ∼ N (0,Ri,k).

We employ the EKF to recursively compute the state estimate
and error covariance. Specifically, we linearize the nonlinear sys-
tem at the linearization points, x⋆

k|k−1 and x⋆
k|k (i.e., the linearization

points before and after the update at time-step k) [see (1) and (2)],
and obtain the linearized error-state system1:

x̃k+1|k = Φkx̃k|k + wk (3)
z̃i,k|k−1 = Hi,kx̃k|k−1 + vi,k , i ∈ {1, . . . , s} (4)

where

Φk = ∇xk f
⏐⏐⏐
{x⋆

k|k,x
⋆
k+1|k}

, Hi,k = ∇xkh
⏐⏐⏐
{x⋆

k|k−1}

. (5)

The canonical choice of linearization point is the latest state es-
timate, which, however, is not necessarily the best choice as we
will show later. Once the propagation and measurement Jacobians
are computed, we propagate and update the state estimate and
covariance, respectively, as follows [2]:

x̂k+1|k = f(x̂k|k,uk) (6)

Pk+1|k = ΦkPk|kΦ
T
k + Qk (7)

x̂k|k = x̂k|k−1 + Kkrk (8)

Pk|k = Pk|k−1 − KkSkKT
k (9)

1 Throughout this paper, the subscript ℓ|j refers to the estimate of a quantity
at time step ℓ, after all measurements up to time step j have been processed. x̂ is
used to denote the estimate of a random variable x, while x̃ = x − x̂ is the error
in this estimate. 0m×n denotes m × n matrices of zeros, and In is the n × n identity
matrix.

where Kk = Pk|k−1HT
i,kS

−1
k is the Kalman gain, rk = zi,k −

h(x̂k|k−1, si,k) is the residual, and Sk = Hi,kPk|k−1HT
i,k + Ri,k is the

corresponding residual covariance.

2.1. Observability and Fisher information

Since the EKF is constructed based on the linearized system
[see (3) and (4)], it is important to study the observability prop-
erties of the corresponding deterministic system (i.e., noise free).
For a deterministic system, observability examines whether the in-
formation provided by the availablemeasurements is sufficient for
estimating the initial state without ambiguity. This however does
not guarantee, while offering a hope for, viable estimation for the
corresponding stochastic system. In particular, the observability
matrix for the linearized system (3)–(4) during the time interval
[0, k] is defined by [8,9]:

M =

⎡⎢⎢⎣
H0

H1Φ0
...

HkΦk−1 · · ·Φ0

⎤⎥⎥⎦ . (10)

If the linear system is observable, then the corresponding observ-
ability matrix M is full-rank.

The FIM is closely related to the system observability and pre-
cisely describes the information available in themeasurements [2].
Thus, by studying its properties, we can gain insight about the
directions in the state space along which information is actually
available. To this end, we examine the structure of the Hessian (in-
formation) matrix of the corresponding batchmaximum a posteri-
ori (MAP) estimator over the time interval [0, k], which is known to
be optimal [10]. Inwhat follows, we show that the FIM of the initial
state x0 (obtained by marginalizing or integrating over all other
states) has the same rank properties as the observability matrix.
This motivates us to instead examine the observability matrix,
rather than the FIM, to enforce proper information acquisition from
measurements, in the ensuing analysis.

The optimal batch-MAP estimator utilizes all available infor-
mation to estimate the entire state trajectory that is formed by
stacking all states in the time interval [0, k]:

x0:k =
[
xT0 xT1 · · · xTk

]T
. (11)

Specifically, the batch-MAP estimator seeks to determine the en-
tire state-space trajectory estimate x̂0:k|k by maximizing the fol-
lowing posterior pdf (assuming no prior is available):

p(x0:k|z0:k) ∝

k−1∏
κ=0

p(xκ+1|xκ )
k∏

κ=0

p(zi,κ |xκ ) (12)

where z0:k denotes all the sensor measurements in the time in-
terval [0, k]. In the above expression, we have employed the as-
sumption of independent state and measurement noise and the
Markovian property of the system dynamics [see (1), and (2),
respectively]. Moreover, using the assumption of Gaussian noise,
the posterior pdf (12) can be written as:

p(x0:k|z0:k) ∝

k−1∏
κ=0

1
√

|2πQκ |
exp

(
−

1
2
∥xκ+1 − f(xκ ,uκ )∥2

Qκ

)

×

k∏
κ=0

1√
|2πRi,κ |

exp
(

−
1
2
∥zi,κ − h(xκ , si,κ )∥2

Ri,κ

)
(13)

where we have employed the notation, ∥a∥2
Λ ≜ aTΛ−1a. Due to

the monotonicity of the negative logarithm, maximizing (13) is
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