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a b s t r a c t

The purpose of this paper is to study finite-time stability of a class of homogeneous stochastic nonlinear
systemsmodeled by stochastic differential equations. An existence result of weak solutions for stochastic
differential equations with continuous coefficients is derived as a preparation for discussing stochastic
nonlinear systems. Then a generalization of finite-time stochastic stability theorem is given. Byusing some
properties of homogeneous functions and homogeneous vector fields, it is proved that a homogeneous
stochastic nonlinear system is finite-time stable if its coefficients have negative degrees of homogeneity,
and there exists a sufficiently smooth and homogeneous Lyapunov function such that the infinitesimal
generator of the stochastic system acting on it is negative definite. In the case when the drift coefficient
of a stochastic system is homogeneous and has a negative degree of homogeneity, it can be shown that
the stochastic system is also finite-time stable under appropriate conditions. Two examples are provided
as illustrations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Asymptotic stability in dynamical systems implies convergence
of the system trajectories to an equilibrium state over the infinite
horizon. However, in practice, it is desirable that a dynamical sys-
tem possesses finite-time stability, that is, its trajectories converge
to an equilibrium state in finite time. A rigorous framework for
finite-time stability analysis of nonlinear dynamical systems was
presented in [1] by using Lyapunov functions.

If a nonlinear dynamical system incorporates an additive
stochastic disturbance input, and we take the stochastic distur-
bance input to be a Brownian motion, then a stochastic nonlinear
system, described as an Itô stochastic differential equation, will be
generated. The basic theory of stochastic integrals and stochastic
differential equations driven by Brownian motion is given in [2],
and the theory of asymptotic stability of stochastic systems is
discussed in [3,4]. For a stochastic system, a question arises as
to whether the stochastic counterpart of Theorem 4.2 in [1] can
be obtained. A rigorous finite-time stability analysis for stochastic
nonlinear systemswas first made by Yin et al. [5] in the framework
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of Lyapunov functions. It also had been recognized that it is im-
possible to discuss finite-time stability for a stochastic nonlinear
system with locally Lipschitz continuous coefficients. Therefore,
a finite-time stable stochastic nonlinear system at least has one
coefficient that does not satisfy the local Lipschitz condition. In
this case, in general, the uniqueness of solutions in forward time
for such a stochastic system cannot be ensured. Nevertheless, as
was remarked in [6], the uniqueness of solutions is not necessary as
opposed to the existence when studying the finite-time stability of
a stochastic nonlinear system, since stability in probability implies
that the origin is both an equilibrium point and an absorbing state
(see Remark 2.2, [6]).

For deterministic nonlinear systems, homogeneous systems
and homogeneous techniques have been used for the purposes
of finite-time stability and stabilization [7,8], with the aid of the
Lyapunov finite-time stability theorem in [1]. More particularly, it
has been shown in [9] that a homogeneous system is finite-time
stable if and only if it is asymptotically stable and has a negative
degree of homogeneity. This motivates us to consider whether a
homogeneous stochastic nonlinear system is also finite-time stable
if it is asymptotically stable and has a negative degree of homo-
geneity. If not, what conditions can ensure that a homogeneous
stochastic nonlinear system is finite-time stable at the origin?
It seems that more conditions are needed when studying finite-
time stability of stochastic systems due to the randomness and
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complexity of stochastic systems in comparisonwith deterministic
systems.

The main purpose of this paper is to investigate the finite-time
stability of homogeneous stochastic nonlinear systems by means
of the Lyapunov stability theorem in [5] and the theory of homo-
geneous systems in [10–12]. It can be shown that a homogeneous
stochastic nonlinear system is finite-time stable if its coefficients
have negative degrees of homogeneity, and there exists a suffi-
ciently smooth and homogeneous Lyapunov function such that the
infinitesimal generator of the stochastic system acting on it is neg-
ative definite. When the drift coefficient of a stochastic nonlinear
system is homogeneous, it is proved that the stochastic system is
also finite-time stable at the origin under restrictive conditions on
the diffusion coefficient and the Lyapunov function. This result also
implies that it is possible to extend, at least partially, the result
coming from [9] to the stochastic case.

The paper is organized as follows. Section 2 begins with two
definitions of homogeneity for a function and a vector field. Some
preliminary properties of homogeneous functions and homoge-
neous vector fields are given. Particularly, a link between the
homogeneous 2-norm and the Euclidean norm is also established.
Section 3 devotes to studying the finite-time stability of homoge-
neous stochastic nonlinear systems. As a preparation, it is proved
that a stochastic nonlinear systemwith continuous coefficients has
weak solutions if there exists a radially unbounded Lyapunov func-
tion V , which is twice continuously differentiable except possibly
at each point in a negligible set U0 and satisfies LV (x) < 0 for
any x ∈ Rn

\ {0}. Then a generalization of finite-time stochastic
stability theorem is given.We first consider a class of homogeneous
stochastic nonlinear systems whose coefficients have negative de-
grees of homogeneity. We show that such a stochastic system is
finite-time stable at the origin if there exists a suitable homo-
geneous Lyapunov function. We further prove that a stochastic
nonlinear system is finite-time stable if its drift coefficient has a
negative degree of homogeneity and there is an appropriate ho-
mogeneous Lyapunov function. Also, two examples are provided as
illustrations togetherwith some remarks. Finally, some concluding
remarks are given in Section 4.

2. Homogeneous functions and some properties

In this sectionweadopt the definitions of homogeneity for func-
tions and vector fields (vector valued functions) given in [12] (see
also, for example, [10,11]), where the dilation is used to define the
homogeneity of a function or a vector field. The so-called dilation
is a mapping of the form ∆ε(x1, . . . , xn) = (εr1x1, . . . , εrnxn) with
respect to ε > 0, where x1, . . . , xn are fixed coordinates on Rn and
r1, . . . , rn are some positive real numbers. (r1, . . . , rn) is also called
the dilation weight. We denote by C(Rn,Rp) the set of continuous
(vector) functions from Rn onto Rp, where p is an integer. Let
C2(Rn,R) denote the family of twice continuously differentiable
functions from Rn onto R.

Definition 2.1 (Homogeneous Function). A function V ∈ C(Rn,R)
is said to be homogeneous of degree τ ∈ R with the dilation
∆ε(x1, . . . , xn) if

V
(
∆ε(x1, . . . , xn)

)
= ετV (x1, . . . , xn), ∀x ∈ Rn

\ {0}. (2.1)

Definition 2.2. A vector field f ∈ C(Rn,Rn) is said to be homoge-
neous of degree l ∈ Rwith respect to the dilation ∆ε(x1, . . . , xn) if
the ith component fi satisfies

fi
(
∆ε(x1, . . . , xn)

)
= εl+ri fi(x1, . . . , xn), ∀x ∈ Rn

\ {0}, i = 1, . . . , n. (2.2)

For any given dilation weight (r1, . . . , rn) and constant p ≥ 1,
the homogeneous p-norm is defined as ∥x∥∆,p =

(∑n
i=1|xi|

p/ri
)
1/p,

∀x ∈ Rn. If p = 2, ∥x∥∆,p is written as ∥x∥∆ for simplicity. We
denote by ∥x∥ the usual Euclidian norm ∥x∥ =

(∑n
i=1x

2
i

)
1/2.

If differentiating both sides of Eq. (2.1) with respect to xi and xj,
we can derive the following properties.

Lemma 2.1 ([13]). If V ∈ C2(Rn,R) is a homogeneous function
of degree τ ∈ R with respect to a dilation weight (r1, . . . , rn), then
its partial derivatives ∂V/∂xi and ∂2V

∂xi∂xj
are also homogeneous. More

precisely,
∂V
∂xi

(
∆ε(x1, . . . , xn)

)
= ετ−ri

∂V
∂xi

(
x1, . . . , xn

)
, i = 1, . . . , n, (2.3)

∂2V
∂xi∂xj

(
∆ε(x1, . . . , xn)

)
= ετ−ri−rj

∂2V
∂xi∂xj

(
x1, . . . , xn

)
, i, j = 1, . . . , n. (2.4)

The next lemma provides a link between the homogeneous
2-norm and the Euclidean norm. This property will play an impor-
tant role in proving finite-time stability of homogeneous stochastic
nonlinear systems.

Lemma 2.2. Suppose V ∈ C(Rn,R) is positive definite and ho-
mogeneous with a degree τ > 0 with respect to a dilation weight
(r1, . . . , rn). Then the following inequalities hold:

V (x1, . . . , xn) ≤ c̄ ∥x∥τ
∆ ≤ ˆ̄c

[
∥x∥

τ

r̄ 10≤∥x∥≤1 + ∥x∥
τ
r 1∥x∥>1

]
, (2.5)

and

V (x1, . . . , xn) ≥ c ∥x∥τ
∆ ≥ ĉ

[
∥x∥

τ
r 10≤∥x∥≤1 + ∥x∥

τ

r̄ 1∥x∥>1

]
, (2.6)

where r = min ri, r̄ = max ri, and 0 < ĉ ≤ c ≤ c̄ ≤ ˆ̄c are some
constants.

Proof. Without any loss of generality, we only need to prove (2.5)
and (2.6) in the case of x ∈ Rn

\ {0}. For given dilation weight
(r1, . . . , rn), it is easy to verify that the homogeneous 2-norm ∥x∥∆

is homogeneous of degree 1. By Lemma 4.2 in [14], we have

c ∥x∥τ
∆ ≤ V (x) ≤ c̄ ∥x∥τ

∆, (2.7)

where

0 < c := min
{z:∥z∥∆=1}

V (z) ≤ c̄ := max
{z:∥z∥∆=1}

V (z) < ∞.

Let U be a closed set defined by U = {x ∈ Rn
: ∥x∥ ≤ 1}. If

(x1, . . . , xn) ∈ U , by using elementary inequalities (|a|+|b|)q ≤

|a|q+|b|q when 0 < q ≤ 1 and (|a|+|b|)q ≤ 2q−1(|a|q+|b|q) as
q > 1, we can derive that

n∑
i=1

|xi|2/ri≤
n∑

i=1

|xi|2/r̄≤

{
∥x∥

2
r̄ , if 0 < r̄ ≤ 1,

21− 1
r̄ ∥x∥

2
r̄ , if r̄ > 1.

(2.8)

This, together with (2.7), yields that

V (x1, . . . , xn) ≤ c̄ ∥x∥τ
∆ ≤ c̄

[
2

τ
2 −

τ
2r̄ ∨ 1

]
∥x∥

τ

r̄ := ˆ̄c∥x∥
τ

r̄ , (2.9)

where a ∨ b means the maximum of a and b. For the case of
(x1, . . . , xn) ∈ U c , it follows from (2.8) that

∥x∥∆ =

( n∑
i=1

|xi|2/ri
)
1/2

=

( n∑
i=1

(
|xi|
∥x∥

)
2/ri∥x∥2/ri

)
1/2

≤ ∥x∥
1
r
( n∑

i=1

(
|xi|
∥x∥

)
2/ri

)
1/2

≤

[
2

1
2 −

1
2r̄ ∨ 1

]
∥x∥

1
r ,

which, together with (2.9), gives the required result.
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