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a b s t r a c t

In this paper, we apply active disturbance rejection control, an emerging control technology, to achieve
practical output tracking for a class of nonlinear systems in the presence of vastmatched andmismatched
uncertainties including unknown internal system dynamic uncertainty, external disturbance, and un-
certainty caused by the deviation of control parameter from its nominal value. The total disturbance
influencing the performance of controlled output is refined first and then estimated by an extended state
observer (ESO). Under the assumption that the inverse dynamics of the uncertain systems are bounded-
input-bounded-state stable, a constant high gain ESO based output feedback is constructed to guarantee
that the state is bounded and the output tracks practically a given reference signal. A time-varying gain
ESO is also discussed to reduce the peaking value near the initial stages of ESO caused by constant high
gain. Numerical simulations are presented to demonstrate the effectiveness of the proposed output-
feedback control scheme.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Dealingwith uncertainty is a key issue inmodern control theory
since the inception of the modern control theory in the later
years of 1950s, seeded in [1] where it is stated that the control
operation ‘‘must not be influenced by internal and external dis-
turbances’’ [1, p. 228]. Many methods have been developed since
1970s to cope with uncertainty like robust control [2], high-gain
control [3], internal model principle [4–6], adaptive control [7],
among them, the robust control is a remarkable paradigm shift
in modern control theory [8]. However, most of these control
methods are based on the worst case scenario, which makes the
controller designed rather conservative. Very different strategy is
the estimation/cancellation strategy which can be found in adap-
tive control and internal model principle for dealing with almost
known uncertainty.

The idea of estimation/cancellation strategy is carried forward
by known as active disturbance rejection control (ADRC) to this
day, proposed by Han [9] in later 1980s. ADRC lumps vast uncer-
tainty into ‘‘total disturbance’’ which may include the coupling
between unknown system dynamics, external disturbance, the
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superadded unknown part of control input, or even if whatever
the part of hardly to be dealt with by practitioner. This spans
significantly the concept of ‘‘disturbance’’. The key idea of ADRC is
that the ‘‘total disturbance’’, as a signal of time, nomatter it is state-
dependent or free, time invariant or variant, linear or nonlinear, is
reflected entirely in the observablemeasuredoutput and canhence
be estimated. The estimation of total disturbance as well as state
is realized through a device called extended state observer (ESO).
The ‘‘total disturbance’’ is then compensated in the feedback loop
by its estimate. This estimation/cancellation nature of ADRCmakes
it capable of eliminating the uncertainties before it causes negative
effect to control plant.

In the last few years, some progresses have been made leading
to theoretical foundation of ADRC in [10–21], among many others.
The convergence of linear ESO, which is proposed in [22] in terms
of bandwidth, is discussed in [17,21]. Linear ADRC has been ad-
dressed for different systems like those for control and disturbance
unmatched systems [14], lower triangular systems [16], and the
system without known nominal control parameter [13]. In addi-
tion, linear ADRCwith adaptive gain ESO is investigated in [15]. The
convergence of nonlinear ADRC for SISO systems is proved firstly
in [10] and extended secondly toMIMO system in [11], and then to
lower triangular system in [19,20], and to system with stochastic
disturbance in [12]. The convergence of nonlinear ADRCwith time-
varying gain ESO is discussed in [18].

On the other hand, most of aforementioned literatures mainly
address ADRC for essential-integral-chain systems with matched
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uncertainties, and very little attention is paid to systems with
uncertainties that are not in the control channel. Actually, systems
with non-integral chain form and mismatched uncertainties are
more general and widely exist in practical engineering systems.
For example, in flight control systems, the lumped disturbance
torques caused by un-modeled dynamics, external winds, parame-
ter perturbations, etc., always influence the states directly but not
through the input channels [23]. To this end, a generalized ESO
based control approach was proposed for general systems with
mismatched uncertainties and non-integral chain form in [14],
whose feasibility and validity are mainly demonstrated by nu-
merical and application design examples. The stability analysis
in [14] is addressed under strong conditions that the mismatched
uncertainties are bounded, independent of states, and have con-
stant values in steady state. In addition, [16] addresses ADRC to
achieve desired performance for a class of MIMO lower-triangular
nonlinear systems with vast mismatched uncertainties by state
feedback.

In this paper, we address ADRC approach to output tracking for
lower triangular nonlinear systemswithmore generalmismatched
uncertainties without restrictive conditions like that in [14], and
output feedback control instead of state feedback like that in [16]
is concerned.

The remainder of the paper is organized as follows. In the next
section, Section 2, the total disturbance that affects the output of
the system is first determined. We then design a constant high
gain ESO to estimate the total disturbance in real time, and finally
a constant gain ESO based output feedback control is designed.
It is shown that the output feedback control law can guarantee
the boundedness of the state of the closed-loop and the output
tracks practically a given reference signal. In Section 3, a time-
varying gain ESO is briefly discussed to reduce the peaking value
near the initial stage of ESO caused by constant high gain. Finally, in
Section 4, we present some numerical simulations for illustration
of the performance of closed-loop and the peaking value reduction.

2. ADRC with constant gain ESO

In this paper, we consider output tracking problem for a class of
uncertain nonlinear systems in lower triangular form described as
follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t) + h1(x1(t), ζ (t), w(t)),
ẋ2(t) = x3(t) + h2(x1(t), x2(t), ζ (t), w(t)),

...

ẋn(t) = f (t, x(t), ζ (t), w(t)) + b(t, w(t))u(t),
ζ̇ (t) = f0(x1(t), ζ (t), w(t)),
y(t) = x1(t),

(2.1)

where x(t) = (x1(t), . . . , xn(t)) ∈ Rn and ζ (t) ∈ Rm are system
states with ζ (t) the zero dynamics, y(t) ∈ R the measured output,
u(t) ∈ R the control input, w(t) ∈ R the unknown exogenous
signal or external disturbance, and b(·) : [0, ∞) × R → R the
control coefficient which is not exactly known yet has a nom-
inal value b0(t) sufficiently closed to b(·). The functions hi(·) :

Ri+m+1
→ R (i = 1, 2, . . . , n − 1), f (·) : [0, ∞) × Rn+m+1

→

R, and f0(·) : Rm+2
→ Rm are generally unknown. So system

(2.1) allows nonlinear uncertainties in all channels, not only in the
control channel as considered in existing literature. As indicated
in [9], the key point in application of ADRC is how to reformulate
the problem by lumping various known and unknown quantities
that affect the system performance into ‘‘total disturbance’’. This
is a crucial step in transforming a complex control problem into
a simple one. A natural requirement is that the total disturbance
can be identified from themeasured output. The idea of addressing
ADRC for deterministic systems with mismatched uncertainties is

originated from [24]where no theoretical proof is given.Motivated
by [24], we set⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x̄1(t) = x1(t),
x̄2(t) = x2(t) + h1(x1(t), ζ (t), w(t)),

x̄i(t) = xi(t) +

i−1∑
j=1

h(j−1)
i−j (x1(t), . . . , xi−j(t), ζ (t), w(t)),

3 ≤ i ≤ n,

(2.2)

where h(j−1)
i−j (·) represents the (j − 1)-th derivative of hi−j(·) with

respect to time variable t . A straightforward computation shows
that for all i ≥ 3,

i−1∑
j=1

h(j−1)
i−j (x1(t), . . . , xi−j(t), ζ (t), w(t))

= fi−1(x1(t), . . . , xi−1(t), ζ (t), w(t), . . . , w(i−2)(t)) (2.3)

for some continuous function fi−1(·) when hi(·) ∈ Cn+1−i(Ri+m+1
;

R), f0(·) ∈ Cn−1(Rm+2
;Rm), and w(·) is n-th continuously differ-

entiable with respect to time variable t supposed in Assumption
(A1) later. Equivalently, there are continuous functions φi(·) (i =

1, 2, . . . , n − 1) such that⎧⎪⎪⎨⎪⎪⎩
x1(t) = x̄1(t),
x2(t) = x̄2(t) − h1(x̄1(t), ζ (t), w(t)) ≜ φ1(x̄1(t), x̄2(t), ζ (t), w(t)),

.

.

.

xn(t) ≜ φn−1(x̄1(t), . . . , x̄n(t), ζ (t), w(t), . . . , w(n−2)(t)).

(2.4)

Under the new state variable x̄(t) = (x̄1(t), . . . , x̄n(t)), the
x-subsystem of (2.1) is transformed into an essentially integral-
chain system with control matched total disturbance as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

˙̄x1(t) = x̄2(t),
˙̄x2(t) = x̄3(t),

...
˙̄xn(t) = x̄n+1(t) + b0(t)u(t),
y(t) = x1(t),

(2.5)

where the ‘‘total disturbance’’ x̄n+1(t) is given by

x̄n+1(t) = f (t, x(t), ζ (t), w(t)) + (b(t, w(t)) − b0(t))u(t)

+

n−1∑
j=1

h(j)
n−j(x1(t), . . . , xn−j(t), ζ (t), w(t)). (2.6)

Our control objective is to design an output feedback control so
that for all initial states in given compact set, the state (x(t), ζ (t))
is bounded and the output y(t) tracks practically a given, bounded,
reference signal r(t) whose derivatives ṙ(t), r̈(t), . . . , r (n+1)(t) are
supposed to be bounded. Let

(r1(t), r2(t), . . . , rn+1(t)) = (r(t), ṙ(t), . . . , r (n)(t)). (2.7)

The key step of ADRC is to design an extended state ob-
server (ESO) for x-subsystem of (2.1) to estimate the total distur-
bance, which can be reduced to design ESO for system (2.5). This
is because these two systems have the same controlled output
and there exist continuous invertible transformations between x-
variable and x̄-variable as shown in (2.2) and (2.4). The simplest
ESO is linear one which takes advantage of simple turning param-
eter but it may bring the peaking value problem, slow conver-
gence, andmany other problems contrast to fast tracking and small
peaking value indicated numerically in [25] by nonlinear ESO. By
taking these points into account, we introduce a nonlinear ESO
[10,19,20] with constant high gain tuning parameter for system
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