
Systems & Control Letters 100 (2017) 43–50

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

Implications of dissipativity on stability of economic model predictive
control—The indefinite linear quadratic case
Olumuyiwa I. Olanrewaju *, Jan M. Maciejowski
Department of Engineering, University of Cambridge, Trumpington St, Cambridge CB2-1PZ, UK

a r t i c l e i n f o

Article history:
Received 5 May 2015
Received in revised form 18 August 2016
Accepted 19 November 2016
Available online 3 January 2017

Keywords:
Economic model predictive control
Dissipativity
Strict–dissipativity
Stability

a b s t r a c t

In contrast to the conventional model predictive control (MPC) approach to control of a given system
where a positive–definite objective function is employed, economic MPC employs a generic cost which is
related to the ‘economics’ of the process as the objective function in the regulation layer. Often, stability
proofs of the closed-loop system are based on strict-dissipativity of the system with respect to this
objective function. In this paper, we focus on linear systems with indefinite quadratic costs. We show
that while strict–dissipativity guarantees stability of the closed–loop system, it is not required. Hence
we formulate a necessary and sufficient condition that guarantees asymptotic stability of the closed loop
system. This condition comes down to the existence of two distinct storage functions forwhich the system
is dissipative.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In conventional model predictive control (MPC) and linear
quadratic regulator (LQR) approaches to the control of a given
system, the optimal steady-state of the system with respect to the
‘economic’ cost is first computed then deviations from this optimal
steady-state are minimized using a dynamic regulation layer. This
dynamic regulation layer is usually referred to as the advanced
process control layer (which uses MPC or LQR) . The cost function
employed in theMPC plays a very important role for the stability of
the closed-loop system. It has been established in both theMPCand
LQR literature that under nominal operation, stability of the closed
loop system (using MPC or LQR) can be guaranteed provided the
system is stabilizable, the cost function is positive-definite and a
suitable terminal cost is used [1–3].

Economic MPC (e–MPC) employs a different approach to pre-
dictive control. The ‘economic’ cost is used directly in the dynamic
regulation layer. Since this cost is generic and not guaranteed to be
positive-definite as in conventional MPC, proof of stability cannot
be based on this property of the cost function. Strict-dissipativity, a
property of the system with respect to the cost function, has often
been used to overcome this limitation. This strict-dissipativity
condition plays a central role in the analysis of economic MPC.
The sufficiency of strict-dissipativity condition for optimality of
steady-state operation was established in [4–6] while [4,7] further
showed that this same strict-dissipativity condition guarantees
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stability of the closed-loop system obtained using the economic
cost in the dynamic regulation layer. Thus, optimality of steady-
state operation and stability of the dynamic regulation to this
steady-state are both guaranteed by the same strict-dissipativity
condition. It has also been proven that a less strict condition,
dissipativity, also guarantees optimality of steady-state operation
and is close to being necessary for steady state operation to be
optimal (under some additional controllability assumption) [5,6].
Simulations however show that in some cases, dissipativity (and
not strict-dissipativity) appears to be sufficient for stability in the
dynamic regulation layer. It is therefore of interest to characterize
the cases when dissipativity is sufficient for the stability of the
closed loop system.

This work focuses on linear systemwith purely quadratic costs,
without definiteness restrictions. Such purely quadratic costs arise,
for instance, in ocean wave energy conversion where the objective
is to maximize the absorbed power. The power extracted can
be modelled as a product of the damping coefficient (constant
factor), velocity of the buoy (state, x(k)) and the active forcing
element (u(k)) [8–10]. This leads to an indefinite quadratic formu-
lation of the economic objective function. Such indefinite quadratic
costs are also encountered in process control where the economic
objective of an isothermal continuous stirred-tank reactor is to
maximize the production rate (of one of the outputs), modelled
as a product of the concentration of the output (state) and the
flow rate through the reactor (input) [6,11,12]. Another scenario is
when there are conflicting objectives, for instance, minimizing the
control effort (energy input) of steering an aircraft while trying to
maximize the cruise speed (kinetic energy) of the aircraft [13,14].
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This can be achieved by minimizing a quadratic cost using a neg-
ative weighting (Q < 0) on the states and positive weighting
(R > 0) on the inputs, which once again leads to an indefinite cost
formulation.

Hence, we seek to establish conditions underwhich the optimal
economic controller in such cases as these are also an asymp-
totically stabilizing controller for the system. By creating a link
between dissipativity, existence of a control Lyapunov function for
the closed–loop system and the optimal cost function, we establish
a necessary and sufficient condition for stability of the closed–loop
system based on dissipativity of the system with respect to the
stage cost.

This paper is organized as follows: Section 2 investigates the
link betweendissipativity and the existence of a stabilizing optimal
controller; Section 3 presents a discussion on the sufficiency of
strict-dissipativity for closed–loop asymptotic stability and possi-
bility of dissipativity to guarantee stability; Section 4 characterizes
the necessary and sufficient condition under which dissipativity
guarantees asymptotic stability; Section 5 presents some numeri-
cal examples and Section 6 concludes the paper.

Nomenclature.

The symbols R and I0:N−1 denote the sets of real numbers and
{0, 1, . . . .N−1} respectively.Wedenoteρ(C) as the spectral radius
of C, C† as the Moore–Penrose generalized inverse of C and Ker(C)
as the Kernel of C .

2. On dissipativity and existence of stabilizing optimal
controller

In this section, the necessity and sufficiency of dissipativity (of a
systemwith respect to the given objective function) for the optimal
controller to be stabilizing is investigated. To ease checking of the
dissipativity condition, we focus on linear systems with quadratic
cost functions without any restriction on the definiteness of the
cost.

Given the linear discrete time system

xk+1 = Axk + Buk (1)

and the stage cost

l(xk, uk) = xTkQxk + uT
kRuk + 2xTk Suk, (2)

we consider the following finite-horizon optimization problem

min
u

JN (x,u) ≜ xTNPNxN +

N−1∑
k=0

l(xk, uk)

subject to

{xk+1 = Axk + Buk, k ∈ I0:N−1
xk ∈ X, uk ∈ U, k ∈ I0:N−1
x0 = x(i), xN ∈ XF

(3)

where X ⊆ Rn, U ⊂ Rm and XF ⊆ X is a compact terminal region
chosen to ensure recursive feasibility. x(i) is the measured state
at time i and xk the predicted value of state x at time step i + k
given measurement x(i). Without loss of generality, the optimal
steady–state, defined as the solution to the optimization problem

l(xs, us) = min
x,u

l(xk, uk) s.t.{xk = Axk + Buk, xk ∈ X, uk ∈ U} (4)

is assumed to be the origin, unique and lies in the interior of the
constraint sets. Moreover, there is no restriction on the definite-
ness of the matrix

[
Q S
ST R

]
and the terminal cost, PN .

The optimization problem (3) is repeatedly minimized over the
horizon N in a moving horizon manner. At each iteration i, (3)
yields the optimal input sequence u∗

= {u∗

0, u
∗

1, . . . , u
∗

N−1}. The

first element of the sequence is applied to the plant yielding the
control law u(i) = u∗

0. We refer to this generated implicit control
law as u∗

0 = −KN (x(i)) and the closed loop system is

x(i + 1) = Ax(i) − BKN (x(i)). (5)

If x0 is in the set of states that can be admissibly steered to the
origin in N steps (or less) and PN is chosen such that it solves the
Discrete Algebraic Riccati Equation (DARE)

ATPNA − PN + Q − (S + ATPNB)KN = 0 (6)

where KN = (R + BTPNB)†(ST + BTPNA) and a solution to (6)
is assumed to exist, then the terminal cost is the same as the
optimal linear quadratic cost, andhence the cost in (3) is equivalent
to an infinite-horizon cost [15–17]. Thus the control law beyond
the horizon becomes the linear law u∗

0 = −KNx(i) and stability
depends on the stabilizing properties of this feedback control law.
The closed loop system (4) is thus asymptotically stable if ρ(A −

BKN ) < 1 and marginally stable if ρ(A − BKN ) ≤ 1where the
eigenvalueswith unitmodulus have equal algebraic and geometric
multiplicity. PN is said to be the stabilizing solution for (DARE) (6) if
PN satisfies (6) and ρ(A−BKN ) < 1. Exceptwhere otherwise stated,
it is assumed that (6) holds with the terminal cost PN used in (3).

Assumption 2.1.

• (A, B) is stabilizable.
• x0 ∈ X0 where X0 is the set of states that can be admissibly

steered to XF in N steps (or less).

Definition 1. System (1) is said to be dissipative [4,18,19] with
respect to the stage cost (2) if there exists a quadratic storage
function xTkPdxk such that for all k ≥ 0,

xTk+1Pdxk+1 − xTkPdxk ≤ l(xk, uk). (7)

Equation (7) is equivalent to the existence of a Pd = PT
d such that

the dissipativity Linear Matrix Inequality (d–LMI)[
ATPdA − Pd − Q ATPdB − S

BTPdA − ST BTPdB − R

]
≤ 0 (8)

is feasible. If (7) and (8) hold with strict inequality, the system is
said to be strictly-dissipative.

We note that while the original definition of dissipativ-
ity [20,21] required Pd to be non-negative, recent definitions
and usage in economic MPC (e–MPC) have removed this restric-
tion [4,7,22,23].

Consider the DARE (6). Taking the Schur complement of (6)
yields the LMI[

ATPA − P + Q ATPB + S
BTPA + ST BTPB + R

]
≥ 0 (9)

with PN being themaximum P forwhich (9) holds. This equivalence
was established in [24] where it was shown that

• The set of strongly rankminimizing solutions of the discrete
LMI coincide with the set of real symmetric solutions of the
DARE associated with the LMI.

• Stabilizing and semi-stabilizing rank minimizing solutions
of the discrete LMI are also strongly rank minimizing.

• The semi-stabilizing rank minimizing solution of the LMI, if
it exists, is the largest solution of the LMI.

We also note that the existence of P that ensures feasibil-
ity of (9) is a necessary condition for the existence of PN that
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