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a b s t r a c t

We consider a sensor transmission power control problem for remote state estimation. In this problem,
a sensor sends its local estimate to a remote estimator over a wireless packet-dropping communication
channel. The transmission power is determined by a recently proposed algorithmwhich uses the innova-
tive information contained in themeasurement. In the current paper, we focus on parameter optimization
arising from the selection of design parameters for this power controller. The existing work obtained
a suboptimal solution to the parameter optimization problem, while by using a vector rearrangement
inequality argument and the vector majorization, we now show that there exists an optimal solution
within a subset of the whole feasible set. By leveraging this property, we obtain an optimal solution via
solving a convex optimization problem.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Networked state estimation acts as a key component in a wide
spectrum of applications, where sensors are deployed across a
field, collecting physical data from distributed spots and send-
ing data over a network to an estimator. Compared with wired
sensors, wireless ones provide many advantages such as low cost
and easy installation. However, an energy dilemma rises for state
estimation when using wireless sensors: as wireless sensors are
usually powered by on-board batteries, energy saving is critical
for prolonging their lifetime; on the other hand, packet losses
caused by channel interference and fading are inevitable, and high
transmission power leads to good estimation performance due to
an inverse relationship between the packet loss probability and the
transmission power as revealed in classic communication theory
and practice [1]. Motivated by this, the problem of how to balance
transmission energy usage and estimation performance has been
widely studied in recent years from different perspectives. Some
works assumed communication cost to be constant and transmis-
sion power management is reduced to communication control.
There are mainly two major types of communication control stud-
ied in the literature. The first type is known as time-based (offline)

✩ The work of L. Shi i supported by an HKUST KTH Partnership FP804.

* Corresponding author.
E-mail addresses: junfengw@kth.se (J. Wu), yuzhe2@ualberta.ca (Y. Li),

dquevedo@ieee.org (D.E. Quevedo), eesling@ust.hk (L. Shi).

communication control, whereby the communication decisions
are simply specified only according to the time. Informally, a purely
time-based strategy is likely to lead to a periodic communication
schedule, see [2–4]. The second type is known as event-based
communication control, whereby the communication decisions
are specified according to the system’s realtime states. Event-based
communication control has been extensively studied in existing
works, e.g. [5–16]. In the papers [13–15], a sensor scheduling
problem is considered, where the decision variable is sending
the data or not. In practical applications, the sensor may choose
the transmission power from a continuous level. In [15], a one-
dimensional discrete time stochastic process is considered. We
aims to extend themodel to amore general frameworkwithmulti-
dimensional process with noisy sensormeasurements. Some other
works have investigated state estimation over fading channels,
in which it is more meaningful to manage sensors’ transmission
power for encountering the effect of time-varying channel fading.
In [17], the authors proposed a predictive control algorithm,where
power and codebook are determined in an online fashion based on
the undergoing estimation error covariance and the channel gain
predictions. Ref. [18] presented a design methodology for optimal
transmission power allocation at a sensor equipped with energy
harvesting technology, in which transmission power is allocated
according to energy harvesting, channel fading and the expected
estimation error covariance of the receiver’s Kalman filter. In [19],
system states are used to determine the transmission power.
Packet losses signal the receiver of side information of system
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state. To avoid computation difficulty, the signaling information
is discarded. Ref. [20] also suggests that managing transmission
power based on real-time system information can improve state
estimation performance, attributed to side information signaled by
packet losses. More related works can been seen in [21–23].

Of particular interest to the currentwork is the approach of [20],
where at each time instant, the transmission power used by a
sensor to send a local estimate is determined according to a
quadratic function of the ‘‘incremental innovation’’. The a posterior
distribution of the system state is updated based on the outcome of
the packet-dropping channel, using a Bayesian inference approach.
Such a power control law was proved to preserve Gaussianity
of the a posteriori distribution, which results in a closed-form
expression of the MMSE estimator. Comparisons with non-data-
driven controllers demonstrate significant performance improve-
ment. In [20], the minimization of the expected estimation error
at each time was addressed via the selection of design parameters.
However, the resulting optimization problem in [20] was relaxed
and solved only approximately; the performance loss due to the
suboptimal solution is neither known nor proved to be bounded.
Similar situations also occur in [13] and [24], where the parameter
optimization problems are solved by minimizing an upper bound
of the performance. As a result, only suboptimal solutions are
obtained. In the current work, we investigate the parameter opti-
mization problem posed in the above sensor transmission control
problem. By using the unitarymatrix decomposition and the vector
rearrangement inequality arguments, we show that an optimal
solution lies in a restricted subset of the feasible set, which can be
computed via solving a convex optimization problem.

The remainder of this paper is organized as follows. In Section 2,
we give the systemmodel. In Section 3, we introduce the transmis-
sion power controller devised in [20] and review some preliminary
results thereof. The main result is presented in Section 4. In Sec-
tion 5weprovide a numerical example. Section 6draws concluding
remarks.

Notation: N (and N+) is the set of nonnegative (and positive)
integers. Sn

+
is the set of n by n positive semi-definite matrices.

The pseudo-determinant of a matrix X ∈ Rn×n is defined as
the product of all non-zero eigenvalues of X . The Moore–Penrose
pseudo-inverse is a generalized inverse of a matrix. For X ∈ Rm×n,
the Moore–Penrose pseudo-inverse of X , denoted as Y ∈ Rn×m,
always exists and is unique, satisfying the following four criteria:
(i) XYX = X; (ii) YXY = Y ; (iii) (XY )∗ = XY ; (iv) (YX)∗ = YX . When
X is a square matrix, by abuse of notations, we use det(X) and X−1

in case of a singular matrix X , to denote the pseudo-determinant
and the Moore–Penrose pseudo-inverse. For a vector x ∈ Rn, we
use x↓ and x↑ to represent the vectors with the same entries, but
re-ordered in decreasing and increasing order respectively. The
symbol N (x, Σ) denotes a Gaussian distribution with mean x and
covariance Σ . We introduce an operator h : Sn

+
→ Sn

+
, where

h(X) ≜ AXA′
+ W , W ∈ Sn

+
.

2. Systemmodel

We are concerned with transmission power control for the
remote state estimation scheme depicted in Fig. 1. In what follows,
we will give the system description.

Consider a discrete-time linear time-invariant (LTI) system
measured by a sensor:

xk+1 = Axk + wk,

yk = Cxk + vk,

where A ∈ Rn×n and k ∈ N, xk ∈ Rn is the system state,
yk ∈ Rm is the sensor’s measurement, the state noise wk ∈ Rn

and observation noise vk ∈ Rm are zero-mean i.i.d. Gaussian with

Fig. 1. Remote state estimation scheme.

E[wkw
′

j] = δkjW (W ⪰ 0), E[vk(vj)′] = δkjR (R ≻ 0), E[wk(vj)′] =

0 ∀j, k ∈ N. The initial state x0 is a zero-mean Gaussian random
vector, uncorrelated with wk and vk. The pair (A, C) is assumed to
be detectable and (A,W ) stabilizable.

As shown in Fig. 1, the sensor locally runs a Kalman filter
and generates a local MMSE estimate. Then it transmits the local
estimate to a remote estimator using power level uk to be designed.
Denote the sensor’s local estimate and error covariance by x̂sk and
P s
k respectively, i.e., x̂

s
k ≜ E[xk|y1, . . . , yk] and P s

k ≜ E[(xk − x̂sk)(xk −

x̂sk)
′
|y1, . . . , yk].We assume that this local Kalman filter has entered

steady state, that is, P s
k = P ⪰ 0, ∀k ∈ N.

The sensor sends data to a remote estimator over an additive
white Gaussian noise (AWGN) channel suffering from channel
fading [1]. The details and assumptions for the communication
channel are provides in [20].

We use a random binary process {γk}k∈N to describe communi-
cation success as follows:

γk =

{
1, if x̂sk arrives error-free at time k,
0, otherwise, (1)

initialized with γ0 = 1. Let uk ∈ [0, +∞) be the transmission
power for the QAM symbol at time k. From [1], the packet loss
probability can be approximated by

Pr (γk = 0|uk, hk) ≈ exp
(

−αhkuk

N0B

)
,

where N0 is the AWGN power spectral density, B is the channel
bandwidth, hk is the channel power gain, and α is a constant
depending on the specific modulation scheme used. Throughout
this paper we will adopt (1) with equality.

3. Transmission power control and remote state estimation

We restrict our attention to one type of transmission power
controllers that render the estimation problem linear and
tractable. The benefit of a linear estimation process is that a closed-
form recursive MMSE estimator can be derived. See [20] for the
idea of preserving the linearity of the estimation process described
below.

Let the incremental innovation contained in the sensor’s local
estimate compared to the latest reception instant be defined as
follows:

zk = x̂sk − Aτk x̂sk−τk
,

where

τk ≜ k − max
1⩽t⩽k−1

{t : γt = 1}.

Consider a transmission power controller f : Rn
↦→ [0, ∞) of the

following form:

uk = fk(zk) ≜
N0B
2αhk

z ′

kQkzk + ϕk, (2)
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