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The paper provides results for the application of boundary feedback control with Zero-Order-Hold
(ZOH) to 1-D inhomogeneous, linear, transport partial differential equations on bounded domains with
constant velocity and non-local terms. It is shown that the emulation design based on the recently
proposed continuous-time, boundary feedback, designed by means of backstepping, guarantees closed-

loop exponential stability, provided that the sampling period is sufficiently small. It is also shown that,
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contrary to the parabolic case, a smaller sampling period implies a faster convergence rate with no upper
bound for the achieved convergence rate. The obtained results provide stability estimates for the sup-
norm of the state and robustness with respect to perturbations of the sampling schedule is guaranteed.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Sampled-data feedback control has been studied extensively for
finite-dimensional systems due to the use of digital technology
in modern control systems for the implementation of the con-
troller (see for instance [1-7] and the references therein). How-
ever, sampled-data feedback control has been scarcely studied
for infinite-dimensional systems. Most of the available results
deal with delay systems (see [8-14]). For systems described by
Partial Differential Equations (PDEs) the design of sampled-data
feedback control faces major technical difficulties: even the notion
of the solution of a PDE under sampled-data feedback control
has to be clarified. Sampled-data controllers for parabolic systems
were designed by Fridman and coworkers in [15-18] by using
matrix inequalities. The works [19,20] provided necessary and
sufficient conditions for sampled-data control of general infinite-
dimensional systems under periodic sampling (see also [21,22]
for the case of “generalized sampling”). Approximate models of
infinite-dimensional systems were used in [23] for practical sta-
bilization. A sampled-data feedback controller for hyperbolic age-
structured models was proposed in [24].

In the linear finite-dimensional case, there are results that guar-
antee closed-loop exponential stability for continuous-time linear
feedback designs when applied with Zero-Order-Hold (ZOH) and
sufficiently small sampling period (see for instance [2,3,5,6]). The
results deal with the case of globally Lipschitz right hand sides
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(which contains the linear case as a subcase) and the application of
the continuous-time feedback under ZOH is called the “emulation”
sampled-data feedback design.

A general robustness result that guarantees closed-loop ex-
ponential stability for continuous-time linear boundary feedback
designs when applied with ZOH and arbitrary (not necessarily
periodic) sampling schedules of sufficiently small sampling period
is missing for the case of systems described by PDEs. In the recent
work [25], efforts were made towards the development of such
general results for linear parabolic PDE systems.

While the development of continuous-time boundary feedback
controllers for hyperbolic PDE systems has progressed significantly
during the last decade (see [26-31] for a single PDE and [32-34]
for systems of PDEs), there are no results that guarantee sta-
bility properties for the sample-and-hold implementation of
continuous-time controllers with arbitrary sampling schedules of
sufficiently small sampling period. The present paper provides
sampled-data, boundary feedback controllers for 1-D, first-order,
linear, transport PDEs with non-local terms. The design is based
on the emulation of the continuous-time boundary feedback de-
sign presented in [30]. It is proved that there is a sufficiently
small sampling period, such that the closed-loop system preserves
exponential stability under the sample-and-hold implementation
of the controller (Theorem 2.2). In other words, we prove that
emulation design works for the case of linear hyperbolic PDEs with
boundary feedback. The derived exponential stability estimates are
expressed in the sup-norm of the state and (conservative) upper
bounds for the sampling period are derived. Finally, robustness
with respect to the sampling schedule is established, exactly as in
the finite-dimensional case.


http://dx.doi.org/10.1016/j.sysconle.2017.07.009
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysconle.2017.07.009&domain=pdf
mailto:iasonkar@central.ntua.gr
mailto:krstic@ucsd.edu
http://dx.doi.org/10.1016/j.sysconle.2017.07.009

1. Karafyllis, M. Krstic / Systems & Control Letters 107 (2017) 68-75 69

The methodology for proving the main result of the present
work is very different from the corresponding methodology in the
parabolic case. While both proofs of the main results in [25] exploit
an eigenfunction expansion procedure, the proof of Theorem 2.2
relies on the representation of the solution of the closed-loop
system by means of an Integral Delay Equation (IDE), as proposed
in [29]. However, there is an additional important difference be-
tween the parabolic and the hyperbolic case. In the hyperbolic
case (Theorem 2.2), by selecting a sufficiently small maximum
allowable sampling period we can achieve an arbitrarily fast rate
of convergence. This is not possible in the parabolic case. This
important difference can be explained by the fact that the nom-
inal continuous-time feedback law (proposed in [30]) achieves
finite-time stability in the hyperbolic case, while the nominal
continuous-time feedback laws in the parabolic case achieve ex-
ponential stability. The proof of Theorem 2.2 provides an estimate
of how small the maximum allowable sampling period must be in
order to achieve a given rate of convergence.

The structure of the present work is as follows: Section 2 is
devoted to the presentation of the problem, the clarification of
the notion of the solution for a hyperbolic PDE system under
boundary sampled-data control, the statement of the main result
(Theorem 2.2) and a discussion about the main result. The proof
of the main result is provided in Section 3. A simple illustrating
example is presented in Section 4. Finally, the concluding remarks
are provided in Section 5.

Notations. Throughout this paper, we adopt the following nota-
tions.

* Ny = [0,+00). Z* denotes the set of all non-negative
integers.

* LetU C N" be a set with non-empty interior and let 2 € N
be a set. By C° (U; £2), we denote the class of continuous
mappings on U, which take values in £2. By C¥ (U; £2), where
k > 1, we denote the class of continuous functions on U,
which have continuous derivatives of order k on U and take
values in £2.

% Letl C 9 be an interval. A function f : I — N is called right
continuous on I if for every t € I and ¢ > O there exists
8 (e,t) > Osuchthatforallt e Iwitht <7 <t+4§ (g, t)it
holds that |f (t) — f (t)| < e. Afunctionf : I — N is called
left continuous on I if for every t € I and ¢ > 0 there exists
§(e,t) > Osuchthatforallt e Iwitht >t >t -5 (e, t)
it holds that |[f (z) —f (t)] < e.Afunctionf : [ — N is
called piecewise continuous on I if for every compact K C |
there exists a finite set B C I N K such that f is C° on
(INK) \ Band furthermore, for every t € I all meaningful
limits limp_, o+ (f (t + h)), lim,_, o+ (f (t — h)) exist and are
finite. Let a € 9N be a given real number. A function f :
[a, +00) — N is called right differentiable on [a, +00) if
for every t > a the limit limy_o+ (R~ (f (t + h) — f (t)))
exists and is finite. A function f : I — N is called piecewise
C! on I if for every compact K < I there exists a finite
set B C I N K such that f is C! on (INK) \ B and all
meaningful limits limy_ o+ (f (t + h)), limy_o+ (f (¢ — h)),
limy_, o+ (f (¢t + h)), limy_,o+ (f (t — h)) exist forall t € [
and are finite.

* Letx : 9y x [0, 1] = N be given. We use the notation x [t]
to denote the profile of x at certaint > 0, i.e,, (x[t]) (z) =
x(t,z)forallz € [0, 1].

* Let I < 9 be an interval. I (I) denotes the space of
equivalence classes of measurable functions f : [ — N
which are square integrable. L*° (I) denotes the space of
equivalence classes of measurable functions f : I — R
which are essentially bounded on I. LY, (I) denotes the space
of equivalence classes of measurable functions f : I — R
which are of class L* (K) for every compact K C I.

* We define ¢, (t) = fot exp(—a(t—s))dsforallt > 0
and a € . Notice that ¢, (t) = =229 for g # 0 and
¢o (t) :=t.

2. Main results

We consider the control system

9 9 1
8—{(nz)+ a—ﬁ t.2)=g@y(t. 1)+/ F @9yt s)ds.

for (t,z) € R4 x [0, 1] (2.1)

1
y(t,0) :u(t)—/ p(S)y(t,s)ds, fort >0 (2.2)
0

where g € C°([0, 1];:9), p € C' ([0, 1];0), f € C°([0, 1]*; %)
are given functions, y [t] is the state and u (t) is the control input.
More specifically, we consider the solution of the initial-boundary
value problem (2.1), (2.2) under boundary sampled-data control
with ZOH:

u(t) =u, fort €[, 1,41) andforallieZ" (2.3)
where {r; > 0,i =0, 1, 2, ...} is an increasing sequence (the se-
quence of sampling times) with 7 = 0, lim; 1 (t;)) = +00

and {y; € N,i=0, 1, 2, ...} is the sequence of applied inputs and
initial condition

v(0,2) =yo (2), forallz € (0, 1] (2.4)

where yg : [0, 1] — N is a given function.

The motivation for the study of initial-boundary value prob-
lems of the form (2.1), (2.2), (2.4) comes from multiple sources and
thatis the reason that problems of the form (2.1),(2.2),(2.4), as well
as the related problem (2.2), (2.4) and

1
a—y(t,Z)Jra—y(t,Z)=/ [z, s)y(t,s)ds,
at 0z 0

for (t,z) € %y x [0, 1] (2.5)

where p € C' ([0, 1]; %), f € L* ([0, 1]*) are given functions, have
been studied extensively in the literature (see [26-31]). In [31]
(Chapter 10), it was shown that the stabilization problem of a
Korteweg-de Vries-like PDE leads to the stabilization problem for
system (2.1), (2.2). Transport PDEs with non-local terms are used
frequently in mathematical biology (see [24,35] and the references
therein). It should be noticed that initial-boundary value problems
of the form

d¢ ¢ ~
3 (t,z) + % t,z2)=a@¢t,2)+g@d(t, 1)
z
1
+ / T(Z,S)qb(t,s) ds, for (t,z) € R, x [0, 1] (2.6)
1
¢ (t,0) =u(t) —/ P(s)¢ (t,s)ds, fort > 0and
0
¢ (0,2) = ¢o (2), forallz € (0, 1] (2.7)

where & € €% ([0, 1]; %), B € €' ([0, 1];9), f € €° ([0, 1]% %),
a e C°([0,1]; M) are given functions, can be transformed to
the form (2.1), (2.2) by means of the transformation y (t,z) =
exp (— foz a(s) ds) ¢ (t, z). Transport PDEs are frequently encoun-
tered in heat and mass transfer phenomena when diffusion is
negligible. In this case, non-local terms arise from quasi-static ap-
proximations (e.g., by applying a quasi-steady state approximation
for the dynamics of the cooling medium temperature in a jacket
surrounding a tube with a hot fluid moving with constant velocity).

Let X be the set of left continuous and piecewise C! func-
tions y [0,1] — M. This is a linear normed space with
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