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a b s t r a c t

In less prescriptive environments where individuals are told ‘what to do’ but not ‘how to do’, syn-
chronization can be a byproduct of strategic thinking, prediction, and local interactions. We prove this
in the context of multi-population robust mean-field games. The model sheds light on a multi-scale
phenomenon involving fast synchronizationwithin the samepopulation and slow inter-cluster oscillation
between different populations.
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1. Introduction

Synchronization is a natural phenomenonwhich arises inmany
applications such as pricing in finance [1,2], opinion dynamics [3],
or transient stability of generators [4] etc. Most of the models for
synchronization are derived in prescriptive environments inwhich
individuals, the agents, are pre-programmed to adopt specific be-
haviors, see [5] and references therein.

In this paper we consider amulti-population of dynamic agents
as illustrated in Fig. 1.

The dynamics of each agent – henceforth referred to as mi-
croscopic dynamics – describes the time evolution of its state
in the form of a stochastic differential equation. In addition, for
each population of agents, we consider the corresponding phase
coherence, which is a measure of the synchronization of the agents
of that population, and the associated dynamics, the latter called
macroscopic dynamics. Each agent seeks to synchronize its phase to
the local average phase obtained via mean-field computation. The
model highlights the following aspects: (i) each agent is a ratio-
nal player equipped with strategic and computation capabilities;
(ii) the interaction is local and subject to disturbances; (iii) agents
are heterogeneous. Local interaction is determined by geographic
proximity between two populations, and is modeled by a network
topology where the nodes are the populations and the links es-
tablish neighbor relations. The model is a multi-population robust
mean-field games within the theory proposed by M.Y. Huang,
P. E. Caines and R. Malhamé in [6–8] and independently by Lasry
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and Lions in [9]. For a survey see [10]. Modeling synchronization
as a game is also in [11]. Game theoretic learning is also discussed
in [12]. Efficiency loss in equilibria is studied in [13]. Higher level
interactions between the subpopulations are analyzed in [14] in
the context of auctions.While sharing someof the general concepts
already present in the aforementioned references, this paper adds
new elements such as local interactions, disturbances and hetero-
geneity in a unified framework.
Main contribution. This paper shows that synchronization can be
obtained in less prescriptive environments as byproduct of strate-
gic thinking, prediction, and local interactions, see Fig. 2. Even if
the agents are not pre-programmed to adopt certain strategies, a
proper mix of the above three factors will lead to synchronization.
To addressmodelmisspecification, the game involves the presence
of an adversarial disturbance which captures uncertainty in the
microscopic dynamics (i.e. some players may be irrational). The
resulting game is then a robust mean-field game as the one in [15]
and in the same spirit as [16].

The model involves a system of coupled partial differential
equations (PDEs). For each population we have one PDE in the
form of a Hamilton–Jacobi–Isaacs (HJI) equation, and a second
PDE which is the Fokker–Planck–Kolmogorov (FPK) equation de-
scribing the diffusion process of the agents’ states. We provide a
solution of the HJI equation under the assumption that the time
evolution of the common state is given. We show that the problem
reduces to solving three matrix equations and that in the infinite
horizon case the macroscopic dynamics is a typical consensus
dynamics.

The analysis of the mean-field game is then extended to the
case of second-order dynamics. Even for this case, we prove that
the problem of approximating mean-field equilibrium strategies
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Fig. 1. Multi-population model with local interactions.

Fig. 2. Synchronization as a result of a proper mix of strategic thinking, prediction,
and local interaction in a structured environment.

reduces to solving three matrix equations. By taking the limit for
T → ∞ the macroscopic dynamics takes the form of a second-
order consensus dynamics. Simulations of simple heuristics show
the multi-scale nature of the process involving fast synchroniza-
tion within the same population and slow inter-cluster oscillation
capturing delays due to the geographic sparsity of the populations.

The remainder of the paper is structured as follows. In Section 2
we formulate the problem. In Section 3 we discuss examples. The
main results are presented in Sections 4 and 5. Section 6 provides
a numerical example. Finally in Section 7 we provide conclusions.

2. Model and problem set-up

Consider p populations of homogeneous agents (players); each
player belongs to a population k ∈ {1, . . . , p} and is characterized
by a state X(t) ∈ R at time t ∈ [0, T ], where [0, T ] is the time
horizon window. The control variable is a measurable function of
time, u(·) ∈ U , where U is the control set, defined as t ↦→ R and
establishes the rate of variation of an agent’s state. A disturbance
tries to affect the agents’ state in a way that is proportional to his
efforts w(·) ∈ W , where W is the control set of the disturbance.

The state dynamics of each player is

dX(t) = (u(t) + w(t))dt + σdB(t), t > 0, (1)

where X(0) = x for given initial state x, σ > 0 is a weighting
coefficient and B(t) is the standard Brownian motion process.

For every population k ∈ {1, . . . , p}, consider a probability
density function mk : R × [0, +∞[ → R, (x, t) ↦→ mk(x, t),
representing the density of agents of that population in state x at
time t , which satisfies

∫
R mk(x, t)dx = 1 for every t . Let the mean

state of population k at time t be mk(t) :=
∫
R xmk(x, t)dx. From

averaging both sides of (1) we get the aggregated dynamics
d
dt

mk(t) = uk(t) + wk(t),

where uk(t) and wk(t) are the mean state-feedback control and
disturbance of that population, i.e.,

uk(t) :=

∫
R
u(x, t)mk(x, t)dx, wk(t) :=

∫
R

w(x, t)mk(x, t)dx.

Let a graph G = (V , E) be given where V = {1, . . . , p} is the
set of vertices, one per each population, and E = V × V is the set
of edges. Although most results are easily generalizable to more
general graphs, possibly time-varying, for the sake of simplicity
we henceforth assume that G = (V , E) is a connected undirected
graph, see e.g. [5, Lemma 1]. Denote the set of neighbors of k by
N(k) = {j ∈ V | (k, j) ∈ E}.

The objective of an agent is to adjust his state based on the
aggregate k th state. Set

ρk =

∑
j∈N(k) mj(t)

|N(k)|
, (2)

where |N(k)| denotes the cardinality of the set N(k), namely the
number of neighbors of k.

Then, for the agents, consider a running cost g : R × R × U →

[0, +∞[, and a terminal cost Ψ : R × R → [0, +∞[, given by:

g(x, ρk, u) =
1
2

[
a(ρk − x)2 + cu2] , (3)

Ψ (ρk, x) =
1
2
S(ρk − x)2. (4)
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