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a b s t r a c t

This paper presents a novel nonlinear sliding mode control methodology for systems with both matched
and unmatched perturbations (including parametric uncertainties). Instead of traditional approaches
where uncertainties and nonlinearities are coped with via linear nominal models and linear sliding
surfaces, the proposed approach incorporates exact convex expressions to represent both the nonlinear
surface and the system, thus allowing a significant chattering reduction. Moreover, thanks to the convex
form of the nonlinear nominal model, when combinedwith the direct Lyapunovmethod, it leads to linear
matrix inequalities, which are efficiently solved via convex optimization techniques. Illustrative examples
are provided.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The main characteristics of sliding mode control (SMC) are
insensitivity tomatched disturbances and finite-time convergence
to the sliding surface [1]; these benefits have sustainedly allured
researchers in control systems for several decades, leading to in-
creasingly complex control lawswhich intend tominimize the side
effects of high frequency signals, this is to say, chattering [2–4] and
magnitude of the control law. Ordinarily, a system is decomposed
into a linear nominal systemplus affine termswhere nonlinearities
and uncertainties (bothmatched and unmatched) are grouped; the
sliding surface is chosen as a linear combination of the states since
this eases the development of the basic theory [5].

Rejection of unmatched uncertainties and perturbations is an
important task in standard SMC [6]. Some approaches based on
backstepping ensure only exact tracking of the output [7,8]; others
only minimization of their influence [9,10]. Nevertheless, a more
realistic and less conservative approach might be to deal with a
nonlinear nominal system, because a linear one subsumes a family
of models into a single one, thus lacking specificity; this has been
already pointed out in [1,11], where a system is shown to converge
more rapidly to a nonlinear sliding surface than to a linear one, but
this example is far from being systematic. Additional advantages
of keeping a nonlinear nominal system can also be foreseen: if
some of the affine terms usually disregarded as matched and
unmatched perturbations and parametric uncertainties are kept
into the nominal system, it might happen their unmatched quality
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will disappear, thus diminishing the size of the control signal while
preserving insensitivity to matched uncertainties. Since the chat-
tering effect is directly connectedwith the size of the uncertainties,
the proposed ideas are fairly justified.

Moreover, how to reach the systematic character of the lin-
ear nominal-based methodologies if a nonlinear one is employed
instead? The answer hereby proposed is based on exact convex
representations of nonlinear terms, a technique well known in the
linear parameter varying (LPV) and quasi-LPV literature [12–14]
and successfully extended for convex sums of linear [15,16] and
polynomial models [17]. These representations are not approxima-
tions. They have led to full developed and still active Lyapunov-
based nonlinear methodologies with the additional advantage of
expressing their conditions in the form of linear matrix inequal-
ities (LMIs), which belong to the class of convex optimization
problems [18,19] that can be solved with commercially available
software [20,21].

As shown in this paper, the use of convex structures for SMC
design allows working with nonlinear expressions by mimicking
the linear case; matched and unmatched uncertainties as well as
parametric ones can be exactly dealt with instead of discarded or
approximated. This advantage reduces the chattering effect, since
the size of the control gain is diminished. Moreover, this approach
inherits the LMI quality of solutions. This is not the first time LMI
conditions have been proposed for SMC design: we found them
in several works [22–26], but to the best of our knowledge, none
of these works is concerned with nonlinear nominal systems and
nonlinear sliding surfaces.

The paper is organized as follows: Section 2 defines the sort of
nonlinear systems this work is concerned about and explains how
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they can be equivalently rewritten as a convex sum of linear mod-
els, which leads to a motivational example as well as a problem
statement; Section 3 develops themain contributions of this work:
nonlinear sliding surface design as well as SMC methodologies
based on nonlinear nominal systems, both certain and uncertain,
with matched and unmatched disturbances; Section 4 provides
illustrative examples to point out the effectiveness of the proposed
results; the final part, Section 5, draws some conclusions and
discusses future work.

2. Preliminaries

Consider the nonlinear affine-in-control system

χ̇ (t) = f (χ ) + g(χ )
(
u(t) + ζ̃ (t, χ )

)
(1)

where χ (t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input,
ζ̃ : R+

× Rn
→ Rm are matched uncertainties, f (·) and g(·) are

smooth nonlinear vector fields of adequate size.
In [27] a diffeomorphism T (·) was proposed such that the sys-

tem (1) can be transformed into a regular form:

η̇ = a11(η, ξ )η + a12(η, ξ )ξ
ξ̇ = a21(η, ξ )η + a22(η, ξ )ξ + b2(η, ξ ) (u + ζ (t, η, ξ )) (2)

with η ∈ Rn−m, ξ ∈ Rm, matrix functions ajk(·, ·), j, k ∈ {1, 2}, of
adequate size, and b2(·, ·) ∈ Rm×m being nonsingular for all (η, ξ )
in a neighbourhood of the origin.

Lemma 1. Smooth bounded nonlinear expressions z(·) ∈
[
z, z

]
can

always be written as convex sums of their bounds.

Proof. Define w0(z) = (z − z)/(z − z) and w1(z) = 1 − w0(z);
then z = zw0(z) + zw1(z). The latter is a convex sum within the
interval under consideration since 0 ≤ w0(z) ≤ 1, 0 ≤ w1(z) ≤ 1,
w0(z) + w1(z) = 1 (convex sum property). □

For instance, if z(x) = x2 is considered for x ∈ [−1, 2], then
z(x) = w0(z)z + w1(z)z with w0(z) = (z − z) /

(
z − z

)
, w1(z) =

1−w0(z) =
(
z − z

)
/
(
z − z

)
, z = 4, z = 0. Note that this algebraic

rewriting is not an approximation and preserves convexity within
the interval under consideration.

Convex sums such as the one just described can be grouped at
the leftmost side of an expression. For instance, ifw(0,1)+w(1,1) = 1
and w(0,2) + w(1,2) = 1, then, for given Xi, Yi ∈ Rn, i ∈ {0, 1}:

1∑
i=0

w(i,1)Xi +

1∑
i=0

w(i,2)Yi =

1∑
i=0

1∑
j=0

w(i,1)w(j,2)(Xi + Yj) =

4∑
i=1

hiZi,

where h1 = w(0,1)w(0,2), h2 = w(0,1)w(1,2), h3 = w(1,1)w(0,2),
h4 = w(1,1)w(1,2), Z1 = X0 + Y0, Z2 = X0 + Y1, Z3 = X1 + Y0,
Z4 = X1 + Y1.

The previous considerations allow rewriting the dynamical
model (2) as a convex sum of linear ones, where nonlinearities
are captured in functions that hold the convex sum property. Such
forms are exact representations of the nonlinear model in a compact
set of the state space and are quite common in the quasi-LPV
literature [14,15]. The methodology just described is also known
as the sector nonlinearity approach.

Applying such methodology to the regular form in (2) requires
performing the following steps:

1. Identify the p non-constant bounded terms zj(η, ξ ) ∈[
z j, z j

]
, j ∈ {1, 2, . . . , p}, in expressions ajk(η, ξ ), j, k ∈

{1, 2}, b2(η, ξ ).
2. Construct p pairs of functions w(0,j), w(1,j) = 1 − w(0,j),

j ∈ {1, 2, . . . , p} such that w(0,j)(zj) = (z j − zj)/(z j − z j).

3. Provided that z(η, ξ ) =
[
z1 z2 · · · zp

]T , construct r =

2p functions hi(z), i ∈ {1, 2, . . . , r} such that

hi(z) = h1+i1+i2×2+···+ip×2p−1 (z) =

p∏
j=1

w(ij,j)
(
zj
)
.

4. Construct matrices Ajk
i , B

2
i , i ∈ {1, 2, . . . , r}, j, k ∈ {1, 2},

such that Ajk
i = ajk(η, ξ )

⏐⏐⏐⏐
hi=1

, B2
i = b2(η, ξ )

⏐⏐⏐⏐
hi=1

.

Once these steps are completed, system (2) can be equivalently
written as a regular convex model:

η̇ = A11
h η + A12

h ξ

ξ̇ = A21
h η + A22

h ξ + B2
h (u + ζ (t, η, ξ ))

(3)

where Ajk
h =

∑r
i=1hi(z)A

jk
i , j, k ∈ {1, 2}, B2

h =
∑r

i=1hi(z)B2
i . Clearly,

B2
h inherits the invertibility properties of b2(η, ξ ).
We can compactly write (3) as follows:

ẋ = Ahx + Bh (u + ζ (t, x)) , (4)

with x =

[
η

ξ

]
, Ah =

[
A11
h A12

h
A21
h A22

h

]
, Bh =

[
0
B2
h

]
.

Remark 1. Keep in mind that any expression with h as a subscript
is in general a nonlinear one, i.e., though the structure in (3) and
(4) reminds that of a ‘‘linear’’ one, they actually preserve all the
information (including nonlinearities) of their original form (2).

Motivation: Ordinarily, sliding mode control methodologies
consider a linear nominal system of the form ẋ = Ax+Bu, grouping
perturbations and uncertainties in a termwhich is usually split into
matched/unmatched parts: once sliding mode occurs, the system
is made insensitive to the first sort of perturbations; H∞ is usually
employed to tackle the second class of perturbations. If nonlin-
ear systems are successfully controlled stacking nonlinearities as
uncertainties as proved in many academic as well as practical
examples, what is the motivation behind nonlinear convex repre-
sentations such as (4)? The answer is illustratedwith the following
example:

η̇1 = −η1 + η1η2

η̇2 = η2 + ξ (5)

ξ̇ = η2
1 + u(t) + ζ (t, η1, η2, ξ ),

where ζ (t, η1, η2, ξ ) is an unknown locally Lipschitz function. As
mentioned above, traditional sliding mode control methodologies
split a nonlinear system into a linear nominal one plus nonlin-
ear/uncertain/disturbance terms; i.e.:[
η̇1
η̇2

]
=

[
−1 0
0 1

][
η1
η2

]
+

[
0
1

]
ξ +

[
η1η2
0

]
ξ̇ = u + ζ (t, η1, η2, ξ ) + η2

1,

(6)

which clearly includes matched as well as unmatched uncertain-
ties. The sliding surface is then defined as s = s1η1 + s2η2 + ξ ,
which in turn defines the nonlinear part of the control law un =

−ρ (t, η1, η2, ξ) sgn(s), with ρ(t, η1, η2, ξ ) begin greater or equal
to a function of bounds on ζ (t, η1, η2, ξ )+ η2

1 (matched) as well as
η1η2 (unmatched) [5].

Now, consider the following rewriting of (5):⎡⎣η̇1
η̇2
ξ̇

⎤⎦ =

[
−1 η1 0
0 1 1

3η1 0 0

][
η1
η2
ξ

]

+

[0
0
1

]
(u(t) + ζ (t, η1, η2, ξ )) . (7)
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