
Systems & Control Letters 104 (2017) 49–58

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

Tangent vector field approach for curved path following with
input saturation
Yueqian Liang, Yingmin Jia *
The Seventh Research Division and the Center for Information and Control, School of Automation Science and Electrical Engineering, Beihang University
(BUAA), Beijing 100191, China

a r t i c l e i n f o

Article history:
Received 6 June 2015
Received in revised form 6 January 2017
Accepted 7 April 2017

Keywords:
Path following
Autonomous vehicle
Guidance vector field
Lyapunov stability
Input saturation

a b s t r a c t

Path following is an indispensable function for autonomous vehicles. Desired paths may be of arbitrary
shape, not just the mostly investigated straight lines and circles. This paper addresses the path following
problem of arbitrary twice differentiable curves using vector-field-based approach. A tangent vector field
is constructed through coordinate transformation, and a sufficient condition for its feasibility concerning
the input saturation is given out. A saturated turning velocity controller is designed and its Lyapunov
stability is discussed in detail. Numerical simulation results show us that the path following performance
of the proposed approach is comparable with that of the literature while involving 5 less parameters to
be set.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

For various autonomous vehicles, such as mobile robots, au-
tonomous marine surface vehicles, autonomous underwater ve-
hicles (AUVs), unmanned ground vehicles (UGVs), unmanned
aerial vehicles (UAVs), space vehicles, etc., two essential motion
control problems, trajectory tracking [1–5] and path following
[4–11], have been paid much attention during the past few years.
Compared with trajectory tracking, path following requires no
time parametrization of the desired paths. In such application
circumstances as mapping, border patrol, search and rescue and
so on, path following is preferable to trajectory tracking [11].

Varieties of approaches have been proposed for the path fol-
lowing problem. In the recent survey paper [11], Sujit et al. clas-
sified these approaches into two categories, geometric methods
and control techniques. Furthermore through a thorough per-
formance comparison of five typical approaches, which are the
carrot-chasing approach, the nonlinear guidance law (NLGL) ap-
proach, the pure pursuit with line-of-sight-based (PLOS-based)
approach, the vector-field-based (VF-based) approach, and the
linear quadratic regulator (LQR) approach, to follow the two most
commonly considered paths, straight lines and circles, the authors
concluded that the VF-based approach can achieve more accurate
path following results than the other approaches, and also requires
the least control effort [11].
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The vector-field-based path following approach was developed
by Lawrence [12,13], Frew [14], Nelson [15], Griffiths [16] et al.
In [12–14] the authors proposed a named Lyapunov vector field
for circular path following. Based on the global convergence of
the reference trajectories determined by the Lyapunov vector field
to the desired loiter circle, heading rate controllers consisting of
a feedback term and a feedforward term were designed to track
the vector field and finally achieve the circular path following
objective. In [15] the authors constructed two respective vector
fields for straight lines and circular paths, and designed sliding
mode controllers accordingly to achieve these two types of path
following. The global exponentially stabilities of the controllers
were also discussed. In [16], the author further investigated the
path following of arbitrary curved paths making use of a modified
vector field.

Based on the Lyapunov vector field proposed in [14] and by
further taking the heading error with respect to the vector field
into account, an alternative feedforward term was exploited to
obtain more accurate circular path following [17,18]. Recently Zhu
et al. gave the rigorous proof of the global convergence of this
circular path following approach [19]. By combining Lyapunov
guidance vector field and a tangent vector field, Chen et al. further
considered this problem temporally to get a theoretically shortest
path for circular path following [20]. Other innovative results for
the vector-field-based path following can be found in [21–24].

Till now except the work given in [16], the existing results
concerning vector-field-based approach for path following only
considered paths with particular forms, mostly lines and circles.
Although a path following approach for arbitrary 2D curves was
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Nomenclature

p(t) = (x(t),y(t))T The vehicle position at time t in XY
frame

p∗(t) = (x∗(t),y∗(t))T The vehicle position at time t in
X∗Y∗ frame

pr = (xr , yr )T Chosen reference point on the desired path
wr = (wrx, wry)T Tangent vector of the desired path at pr
θr Corresponding curve parameter at pr
r = ∥p − pr∥ Distance from p to pr
rc Lateral distance, the directional distance from p to

the tangent line of the desired path at pr
v(t) Linear velocity (synthetical speed) of the vehicle
ω(t) Turning velocity of the vehicle
(ẋd, ẏd)T Vector field
ϕ(t) Turning angle of the vehicle
ϕr Reference turning angle, the inclination of the tan-

gent vector wr
ϕd Desired turning angle determined by the vector

field
ϕe = ⟨ϕ − ϕd⟩ Turning angle error between the vector field

and the vehicle
ϕ̃ = ⟨ϕd − ϕr⟩ Turning angle error between the vector field

and the desired path
ϕe0 Initial turning angle error between the vector field

and the vehicle
ϕ̇r Changing rate of the reference turning angle
ϕ̇d Changing rate of the desired turning angle after

introducing ϕe

proposed in [16], it has the following two limitations. Firstly,
the approach does not consider the input saturation explicitly.
Secondly, the sliding mode controller involves 7 parameters and
actually 4 conditions for them (see Theorem III.1 therein), and it is
not an easy work to set appropriate values for these parameters to
satisfy these four conditions. This is because some of these param-
eters depend on a specific curved path (e.g., ρ and d̄) and some of
them are severely coupled (e.g., µ and d̄). Moreover inappropriate
parameter settings are apt to result in input saturations.

This paper focuses on the path following of arbitrary curves.
Compared with the previous results given in [16], the main con-
tributions are

• The derivation of an equivalent tangent vector field is given.
• Given the input saturation constraint, a sufficient condition

for the tangent vector field to be feasible is presented.
• By considering the input saturation explicitly, a saturated

turning velocity controller is designed. This controller in-
cludes only 3 parameters, two of them are common vector
field parameters, and the third one is the feedback gain.

• The Lyapunov stability of the saturated controller is dis-
cussed in detail.

The remainder of this paper is structured as follows. The curved
path following problem is formulated in Section 2. The tangent
vector field is derived in Section 3, and its feasibility concerning the
input saturation constraint is also studied. A saturated controller
and its Lyapunov stability are discussed in Section 4. Section 5 gives
some simulation examples to assess the proposed approach. And a
short conclusion is given in Section 6.

2. Problem formulation

Denote p(t) = (x(t),y(t))T as the instantaneous position of
the vehicle at time t in the chosen inertial XY frame, and ϕ(t) as

the corresponding turning angle. In this paper we assume that the
kinematics of the vehicle is modeled as{
ẋ(t) = v(t) cosϕ(t)
ẏ(t) = v(t) sinϕ(t)
ϕ̇(t) = ω(t)

(1)

where v(t) andω(t) stand for the linear velocity and the turning ve-
locity respectively. (1) can describe the kinematic characteristic of
a unicycle-type robot [2], a UAV [14,15], a lunar rover [25], etc. For
instance, consider that the vehicle is a UAV. If no wind is present,
then v(t) represents the UAV airspeed, and ω(t) represents the
heading rate [14]. And ifwind disturbance exists, then v(t) andω(t)
represent the groundspeed and the course rate respectively [15].

Saturation constraints generally exist for the velocities v(t) and
w(t), which are given by

v(t) ≤ vmax, |ω(t)| ≤ ωmax. (2)

For fixed-wing aerial vehicles, an additional stall speed constraint
v(t) ≥ vstall > 0 should also be satisfied. For surface vehicles such
as robots, vstall can be set to 0.

In this paper we use ‘‘body speed’’ to denote the speed of the
vehicle itself with no consideration of the effect of the external
environment, e.g., the airspeed of a UAV. And correspondingly,
‘‘synthetical speed’’ is used to indicate the vehicle speed after
considering the external environment, i.e., the speed of the vehicle
with respect to the chosen inertial frame. An example of the syn-
thetical speed is the groundspeed of a UAV and the linear velocity
v(t) is actually the synthetical speed of the vehicle.

In this paper we aim to design the controlling strategy for the
turning velocity ω(t) to achieve the path following objective. We
just assume that the body speed and further the synthetical speed
(i.e., v(t)) of the vehicle are continuous, and for the synthetical
speed, the constraint 0 < vmin ≤ v(t) ≤ vmax always satisfies.

The desired path C(θ ) : {x = x(θ ), y = y(θ )} is assumed
to be twice differentiable. Herein we use ‘‘twice differentiable’’ to
mean that all the first- and second-order derivatives of x and ywith
respect to the curve parameter θ exist, i.e., all of x′

θ , x
′′

θθ , y
′

θ and
y′′

θθ exist, where the superscript ′ denotes the derivative operator.
Naturally we require that (x′2

θ +y′2
θ ) is not zero, since otherwise the

desired path C(θ ) degenerates to an isolated point.
Define a directional lateral distance (or, directional cross-track

distance) rc as follows. Given the current vehicle position p =

(x,y)T , find an appropriate reference point pr = (xr , yr )T =

(x(θr ), y(θr ))T on the desired path. The parametric tangent vector
of the desired path at this point is wr = (wrx, wry)T = (sx′

θr
, sy′

θr
)T ,

where s = ±1 determines the vector direction. And the inclination
of this tangent vector can be computed by

ϕr = arctan2(wry, wrx) = arctan2(sy′

θr
, sx′

θr
) (3)

where arctan2(·, ·) denotes the four-quadrant inverse tangent
function. We name ϕr reference turning angle. Then we can define
rc as the directional distance from p to this tangent line. This
distance is computed as

rc = (x− xr ) sinϕr − (y − yr ) cosϕr . (4)

The reason why we name rc as a directional distance is that rc
can be > 0, < 0, or, = 0. The magnitude of rc represents the
absolute lateral distance, and the sign of rc determines on which
side of the desired path the vehicle currently locates. The geometry
illustration is given in Fig. 1.

Reference points pr should be carefully chosen for different
desired paths. The requirement is that the convergence of the
directional lateral distance rc to 0 can be well representative
of the convergence of the actual distance r = ∥p − pr∥ =√
(x− xr )2 + (y − yr )2 to 0. The following two examples give re-

spective typical guides for the reference point choosing of non-
closed and closed desired paths.
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