Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/sysconle)

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

New results on the Stackelberg–Nash exact control of linear parabolic equations

F.D. Ar[a](#page-0-0)runa ^a, E. Fernández-Cara ^{[b](#page-0-1)}, S. Guerrero ^{[c](#page-0-2)}, M.C. Santos ^{[d,](#page-0-3)}[*](#page-0-4)

^a *Dpto. de Matemática, Universidade Federal da Paraíba, 58051-900, João Pessoa - PB, Brazil*

^b *Dpto. EDAN and IMUS, University of Sevilla, Aptdo. 1160, 41080 Sevilla, Spain*

c *Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 75252 Paris Cédex 05, France*

^d *Dpto. de Matemática, Universidade Federal da Pernambuco, 50670-901, Recife - PE, Brazil*

A R T I C L E I N F O

Article history: Received 12 October 2016 Received in revised form 11 January 2017 Accepted 17 March 2017

Dedicated to Professor L.A. Medeiros on the occasion of his 90th birthday.

Keywords: **Controllability** Stackelberg–Nash strategies Carleman inequalities

1. Introduction

There are plenty of situations where several controls are required in order to drive a system to one or more objectives. Usually, if we assign different roles to the controls, we speak of *hierarchic control.* In the case of a system governed by a PDE, this concept was introduced by J.-L. Lions (see $[1,2]$ $[1,2]$, where some techniques are presented). These works motivated the study of the subject and a lot of other results appeared; see for instance [\[3–](#page--1-2)[7\]](#page--1-3).

All these previous works combine the multicriteria optimization concepts and arguments and approximate controllability. In the context of null controllability, few is known; see [\[8\]](#page--1-4) for some first results.

In this paper, we solve a question that was left open in $[8]$. The solution requires some careful computations based on new Carleman estimates. Let us be more precise.

Let $\varOmega \subset \mathbb{R}^n$ be a bounded domain whose boundary \varGamma is regular enough. Let $T > 0$ be given and define $Q := \Omega \times (0, T)$, with lateral boundary $\Sigma := \partial \Omega \times (0, T)$. In the sequel, we will denote by *C* a generic positive constant which may differ from line to line. Sometimes, we will write $C(\Omega)$, $C(\Omega, T)$, etc. to indicate the data

* Corresponding author.

E-mail addresses: fagner@mat.ufpb.br (F.D. Araruna), cara@us.es (E. Fernández-Cara), guerrero@ann.jussieu.fr (S. Guerrero), mauricio@dmat.ufpe.br (M.C. Santos).

<http://dx.doi.org/10.1016/j.sysconle.2017.03.009> 0167-6911/© 2017 Elsevier B.V. All rights reserved.

A B S T R A C T

This paper is concerned with Stackelberg–Nash strategies to control parabolic equations. We have one control, the *leader,* that is responsible for a null controllability property; additionally, we have a couple of controls, called the *followers,* that provides a *Nash equilibrium* for two cost functionals. This is a classical situation in many fields of science and, in mathematics, leads to a lot of interesting questions and open problems and possesses many applications. In the main result, we prove the existence of a leader such that the corresponding controlled system is driven to zero. This way, we improve some questions that were left open in previous works.

© 2017 Elsevier B.V. All rights reserved.

on which *C* depends. The usual norm and scalar product in $L^2(\Omega)$ will be respectively denoted by $\|\cdot\|$ and (\cdot, \cdot) .

Let us consider the linear system

$$
\begin{cases}\ny_t - \Delta y + a(x, t)y = f1_{\mathcal{O}} + v^1 1_{\mathcal{O}_1} + v^2 1_{\mathcal{O}_2} & \text{in} \quad Q, \\
y = 0 & \text{on} \quad \Sigma, \\
y(\cdot, 0) = y^0 & \text{in} \quad \Omega,\n\end{cases}
$$
\n(1)

where $y = y(x, t)$ is the state, $a \in L^{\infty}(Q)$ and $y^0 = y^0(x)$ is prescribed. In [\(1\),](#page-0-5) the set $\mathcal{O} \subset \Omega$ is the *main control domain* and $\mathcal{O}_1, \mathcal{O}_2 \subset \Omega$ are the *secondary control domains* (all of them are supposed to be small); $1_{\mathcal{O}}$, $1_{\mathcal{O}_1}$ and $1_{\mathcal{O}_2}$ are the characteristic functions of $\mathcal{O}, \mathcal{O}_1$ and \mathcal{O}_2 , respectively; the controls are the *leader* $f = f(x, t)$ and the *followers* $v^1 = v^1(x, t)$ and $v^2 = v^2(x, t)$.

Let $\mathcal{O}_{1,d}$, $\mathcal{O}_{2,d}$ ⊂ Ω be open sets, representing observation domains for the followers. We will consider the (secondary) functionals

$$
J_i(f; v^1, v^2) := \frac{\alpha_i}{2} \iint_{\mathcal{O}_{i,d} \times (0,T)} |y - y_{i,d}|^2 dx dt + \frac{\mu}{2} \iint_{\mathcal{O}_i \times (0,T)} |v^i|^2 dx dt, \quad i = 1, 2,
$$

and the main functional

$$
J(f) := \frac{1}{2} \iint_{\mathcal{O}\times(0,T)} |f|^2 dx dt,
$$

where the $\alpha_i > 0$ and $\mu > 0$ are constants and the $y_{i,d} = y_{i,d}(x, t)$ are given functions.

The structure of the control process can be described as follows:

1. For each leader f, the followers v^1 and v^2 intend to be a *Nash equilibrium* for the costs J_i ($i = 1, 2$). In other words, once f has been fixed, we look for a couple (v^1, v^2) with $v^i \in L^2(\mathcal{O}_i \times (0,T))$ such that

$$
J_1(f; v^1, v^2) = \min_{\hat{v}^1} J_1(f; \hat{v}^1, v^2),
$$

\n
$$
J_2(f; v^1, v^2) = \min_{\hat{v}^2} J_2(f; v^1, \hat{v}^2).
$$
\n(2)

Note that, if the functionals J_i ($i = 1, 2$) are C^1 and convex, then (v^1, v^2) is a Nash equilibrium if and only if

$$
J'_1(f; v^1, v^2)(\hat{v}^1, 0) = 0,
$$

\n
$$
\forall \hat{v}^1 \in L^2 (\mathcal{O}_1 \times (0, T)), \quad v^i \in L^2(\mathcal{O}_i \times (0, T))
$$

and

$$
J'_2(f; v^1, v^2)(0, \hat{v}^2) = 0,
$$

\n
$$
\forall \hat{v}^2 \in L^2(\mathcal{O}_2 \times (0, T)), \quad v^i \in L^2(\mathcal{O}_i \times (0, T)).
$$

(In fact, this is also true if J_i is C^1 and convex in the *i*th variable.)

2. Let us fix an uncontrolled trajectory of (1) , that is, a sufficiently regular solution to the system

$$
\begin{cases}\n\overline{y}_t - \Delta \overline{y} + a(x, t)\overline{y} = 0 & \text{in} \quad Q, \\
\overline{y} = 0 & \text{on} \quad \Sigma, \\
\overline{y}(\cdot, 0) = \overline{y}^0 & \text{in} \quad \Omega.\n\end{cases}
$$
\n(3)

Once the Nash equilibrium has been identified and fixed for each f , we look for an optimal control $\hat{f} \in L^2(\mathcal{O} \times (0,T))$ such that

$$
J(\hat{f}) = \min_{f} J(f),
$$

subject to the exact controllability restriction

$$
y(\cdot, T) = \overline{y}(\cdot, T) \quad \text{in} \quad \Omega. \tag{4}
$$

In [\[8\]](#page--1-4) it is proved that, if μ is large enough, for every $f \in$ $L^2(\mathcal{O}\times(0,T))$ there exists a unique Nash equilibrium (v^1,v^2) for (J_1, J_2) , given by

$$
v_i = -\frac{1}{\mu} \phi^i 1_{\mathcal{O}_i}, \quad i = 1, 2,
$$

where (y,ϕ^1,ϕ^2) is the unique solution to the optimality system

$$
\begin{cases}\ny_t - \Delta y + a(x, t)y = f \, 1_{\mathcal{O}} - \sum_{i=1}^2 \frac{1}{\mu} \phi^i 1_{\mathcal{O}_i} & \text{in} \quad \mathcal{Q}, \\
-\phi_t^i - \Delta \phi^i + a(x, t)\phi^i = \alpha_i (y - y_{i,d}) 1_{\mathcal{O}_{i,d}} & \text{in} \quad \mathcal{Q}, \\
y = 0, \quad \phi^i = 0 & \text{on} \quad \Sigma, \\
y(\cdot, 0) = y^0, \quad \phi^i(\cdot, T) = 0 & \text{in} \quad \Omega.\n\end{cases}\n\tag{5}
$$

The main result of this paper concerns the exact controllability to the trajectories of $(1)-(2)$. It is the following:

Theorem 1. *Suppose that*

$$
\mathcal{O}_{i,d} \cap \mathcal{O} \neq \emptyset, \quad i = 1, 2. \tag{6}
$$

Also, assume that one of the following two conditions holds:

$$
\mathcal{O}_{1,d} = \mathcal{O}_{2,d} \tag{7}
$$

or

$$
\mathcal{O}_{1,d} \cap \mathcal{O} \neq \mathcal{O}_{2,d} \cap \mathcal{O}.\tag{8}
$$

Fig. 1. $\mathcal{O}_{1,d}$ and $\mathcal{O}_{2,d}$ are disjoint.

Fig. 2. $\mathcal{O}_{1,d}$ and $\mathcal{O}_{2,d}$ are not disjoint and their intersection cuts \mathcal{O} .

Fig. 3. $\mathcal{O}_{1,d}$ and $\mathcal{O}_{2,d}$ are not disjoint, their intersection cuts \mathcal{O} and their individual intersections with $\mathcal O$ are ordered.

Then, there exists $\mu_0 > 0$, only depending on Ω , \mathcal{O} , T , \mathcal{O}_i , $\mathcal{O}_{i,d}$, α_i *and* $||a||_{L^{\infty}(0)}$ *and a positive function* $\hat{\rho} = \hat{\rho}(t)$ *blowing up at* $t = T$ *such that, if* $\mu \geq \mu_0$ *, the y_{i,d} are such that*

$$
\iint_{\mathcal{O}_{i,d}\times(0,T)}\hat{\rho}^2|\overline{y}-y_{i,d}|^2\,dx\,dt\,<\,+\infty,\quad i=1,2
$$

and \bar{v} is the unique solution to (3) associated to the initial state $\overline{y}^0 \, \in \, L^2(\varOmega)$, there exist controls $f \, \in \, L^2(\varnothing \times (0,T))$ and associated *Nash equilibria* (v^1 , v^2) *such that the corresponding solutions to* [\(1\)](#page-0-5) *satisfy* [\(4\)](#page-1-2)*.*

Remark 2. It is worth mentioning that, in [\[8\]](#page--1-4), the authors have proved this result in the particular case in which (6) and (7) are satisfied. [Figs. 1–](#page-1-5)[3](#page-1-6) illustrate some situations where this fails and [\(6\)](#page-1-3) and [\(8\)](#page-1-7) hold simultaneously. \square

Note that, if we introduce the new variable $z = y - \bar{y}$, [\(5\)](#page-1-8) can be rewritten in the form

$$
\begin{cases}\nz_t - \Delta z + a(x, t)z = f \, 1_{\mathcal{O}} - \sum_{i=1}^2 \frac{1}{\mu} \phi^i 1_{\mathcal{O}_i} & \text{in} \quad \mathcal{Q}, \\
-\phi_t^i - \Delta \phi^i + a(x, t) \phi^i = \alpha_i (z - z_{i,d}) 1_{\mathcal{O}_{i,d}} & \text{in} \quad \mathcal{Q}, \\
z = 0, \quad \phi^i = 0 & \text{on} \quad \Sigma, \\
z(\cdot, 0) = z^0, \quad \phi^i(\cdot, T) = 0 & \text{in} \quad \Omega,\n\end{cases}
$$
\n(9)

where $z_{i,d} = y_{i,d} - \bar{y}$ and $z^0 = y^0 - \bar{y}^0$ and [\(4\)](#page-1-2) is equivalent to the null controllability property for *z*, that is,

$$
z(\cdot, T) = 0 \quad \text{in} \quad \Omega. \tag{10}
$$

The proof of [Theorem 1](#page-1-9) relies on some duality arguments which reduce the null controllability property of a linear system to an observability inequality for the solutions to the associated adjoint Download English Version:

<https://daneshyari.com/en/article/5010578>

Download Persian Version:

<https://daneshyari.com/article/5010578>

[Daneshyari.com](https://daneshyari.com)