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a b s t r a c t

This paper considers continuous linear systems involving input saturations and quantized control laws.
Based on spherical polar coordinates, a quantizer of infinite data rate is proposed with a definite relation
between the quantized data and the corresponding quantization error. By the proposed quantizer, state
feedback controllers are designed for input quantization case and state quantization case, respectively, to
achieve both local asymptotic stability and larger stability regions of the systems. Further, a quantizer of
finite data rate is proposed for the same problem.

© 2017 Published by Elsevier B.V.

1. Introduction

In this paper we formulate and solve a stabilization problem
with a limited communication channel. Our task involves design-
ing quantizers for continuous linear systemswith input saturations
and achieving local asymptotic stability of the systems.

The stabilization problem of quantized feedback systems mo-
tivated by numerous applications is a very active and expanding
research area, where communication between the plant and the
controller is limited due to capacity or security constraints; see,
e.g., [1–10] and references therein. Since the systems in practice
are subject to magnitude limitation in the input inevitably, which
may reduce the performance of the closed-loop system or even
lead to instability, much attention is paid to the systemswith input
saturations; see, e.g., [11–18] and references therein. Furthermore,
some papers address quantized feedback control problem of the
systems with saturations, for example, Cepeda and Astolfi [11]
investigate the feedback stabilization problem for SISO linear un-
certain control systems with saturating quantized measurements;
Fridman and Dambrine [12] study quantized and delayed state-
feedback control of linear systems with given constant bounds on
the quantization error and on the time-varying delay; in Liberzon
[15], stabilization of continuous-time systems subject to quantiza-
tion is considered by a hybrid control strategy, the saturation and
quantizer blocks are one and only block, and the saturation is a
particular effect of the quantizer; in Tarbouriech and Gouaisbaut
[18], the saturation nonlinearity and the quantization nonlinearity
are disjoined in order to characterize them precisely, and convex
optimization procedure is provided to design the state feedback
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gain and local uniform ultimate boundedness stability of the sys-
tems is obtained. In contrast to theseworks, we are concernedwith
local asymptotic stability of continuous linear systems with input
saturations and larger stability regions of the systems.

The objective of this paper is to propose appropriate quantizers
to achieve local asymptotic stability and larger stability regions
of continuous linear systems with input saturations and quan-
tized control laws. Two kinds of quantizers are proposed: one
is of infinite data rate and the other finite data rate. Under the
proposed quantizers, the state feedback control design problem is
addressed for input quantization case and state quantization case,
respectively. The proposed approach allows to characterize a set
(stability region) such that the closed-loop trajectories initiated
in the set converge toward the origin. Our work is related to the
work of Tarbouriech and Gouaisbaut [18], of which the saturation
nonlinearity condition is used in the present paper. Except this, the
major difference is the quantizers with different quantization non-
linearity conditions. In Tarbouriech and Gouaisbaut [18], uniform
quantizer under Cartesian coordinates is used, by which the quan-
tization nonlinearity conditions are given, while the quantizers in
this paper are proposed based on spherical polar coordinates, by
which a new quantization nonlinearity condition is developed. The
developed nonlinearity condition shows that the magnitude of the
quantized data is proportional to an upper bound of themagnitude
of the corresponding quantization error, The proposed quantizers
bring benefits to the systems as follows:

(1) The closed-loop trajectories converge toward the origin in-
stead of a set containing the origin. Since the magnitude
of the quantized data is proportional to an upper bound of
the magnitude of the corresponding quantization error, the
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quantization error will tend to null as the quantized data
tends to the origin, by which the local asymptotic stability
is achieved.

(2) The new developed quantization nonlinearity condition
helps to obtain larger stability regions than the existing
results, and the closed-loop trajectories initiated in the ob-
tained stability regions converge toward the origin.

Notation: E and O denote respectively the identity matrix and
the null matrix of appropriate dimensions. For a matrix A ∈ Rm×n,
A(i) and AT denote its ith row and its transpose, respectively. For
two symmetric matrices, A and B, A > B (resp. A ≥ B) means that
A− B is positive definite (resp. semi-definite positive). ∗ stands for
symmetric blocks inmatrices. For two sets S1 and S2, S1\S2 denotes
the set S1 deprived of S2. ∥ · ∥ denotes the Euclidean norm for a
vector and the corresponding matrix induced norm for a matrix,
δmin(·) denotes the minimum singular value of a matrix and ⌈·⌉

denotes the ceiling function.

2. Problem statement

Consider the following continuous linear system:

ẋ = Ax + Bsat(u) (1)

where x ∈ Rd and u ∈ Rm are the state and the input of the
system. Matrices A, B are real constant matrices of appropriate
dimensions. Given any vector u ∈ Rm, the saturation map sat(u) ∈

Rm is classically defined from the symmetric saturation function
which has the positive vector u0 as level, that is, sat(u(i)) =

sign(u(i))min{u0(i), |u(i)|}, i = 1, . . .,m.

The input of the system can be the result of a quantized control
law. A vector x with appropriate dimension is quantized as q(x),
the estimate of x, with the same dimension, where q(·) is the
quantizer function defined in Section 3.1. Two different quantized
control laws are investigated: (i) the input quantization case u(t) =

q(Kx(t)); (ii) the state quantization case u(t) = Kq(x(t)), where
K is a real constant matrix of appropriate dimension. Let Ξ (x) =

q(x) − x be quantization error, a type of quantization nonlinearity.
In this paper, the problem we intend to solve in both cases can

be summarized as follows:

Problem 2.1. Determine a quantizer and a stabilizing state feed-
back gainK , and characterize a setS such that for every initial state
belonging to S the system (1) is asymptotically stable.

Thus, the key problem is to design a quantizer with a new quan-
tization nonlinearity condition such that the state of the system (1)
converges toward the origin instead of a set containing the origin
and larger stability region is achieved for each case.

Remark 2.1. Since the quantization error induced by quantizer is
a discontinuous isolated nonlinearity entering into the dynamics
of the closed-loop system, the resulting closed-loop system is
described by a discontinuous right-hand side differential equa-
tion and the notion of solutions should be then properly defined.
In our paper, we have considered Caratheodory solutions and
accordingly excluded some particular solutions like sliding mo-
tions on the boundaries between the quantization regions. If we
aim at considering such dynamics, we need to extend the con-
cept of solution and consider Krasovskii solutions, which include
Caratheodory solutions and chattering phenomena resulting of
sliding motions [19,20]. Following the works of Ceragioli et al.
[3], this extension can be performed in our work using differential
inclusion tools.

3. Quantizer based on spherical polar coordinates

The quantizer in this paper will be based on spherical polar
coordinates. Let the vector x = [x1 x2 · · · xd−1 xd]T ∈ Rd.
Then we call the column [x1 x2 · · · xd−1 xd]T as the Carte-
sian rectangular coordinate of x. The vector can also be represented
using spherical polar coordinate⎡⎢⎢⎢⎢⎣

r
θ1
...

θd−2
θd−1

⎤⎥⎥⎥⎥⎦ ∈ Bd
:=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
r
θ1
...

θd−2
θd−1

⎤⎥⎥⎥⎥⎦ : 0 ≤ r < ∞, 0 ≤ θ1,

θ2, . . . , θd−2 ≤ π, 0 ≤ θd−1 ≤ 2π

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
via the coordinate transformation pair

x1 = r cos θ1
x2 = r sin θ1 cos θ2

...

xd−1 = r sin θ1 sin θ2 · · · sin θd−2 cos θd−1
xd = r sin θ1 sin θ2 · · · sin θd−2 sin θd−1

and

r =

√
(x1)2 + (x2)2 + · · · + (xd)2

θ1 = arccos
x1√

(x1)2 + · · · + (xd)2

θ2 = arccos
x2√

(x2)2 + · · · + (xd)2
...

θd−2 = arccos
xd−2√

(xd−2)2 + · · · + (xd)2

θd−1 =

⎧⎪⎪⎨⎪⎪⎩
arccos

xd−1√
(xd−1)2 + (xd)2

, if xd ≥ 0,

2π − arccos
xd−1√

(xd−1)2 + (xd)2
, if xd < 0.

For the objective of the paper, we propose a new quantizer
based on spherical polar coordinates.

Definition 3.1. A quantizer of infinite data rate based on spherical
polar coordinates (for abbreviation, a quantizer of infinite data
rate) is a trituple (L, a,M), where the real number L > 0 represents
the radius of the support ball, the real number a > 0 regulates the
proportional coefficient, and the positive integerM ≥ 2 represents
the number of the angles intowhich the angle of radianπ is equally
partitioned. This quantizer partitions the support

Λ =
{
x ∈ Rd

: r ≤ L
}

into quantization blocks as follows:
the sets {x ∈ Rd

:
L

(1+2a)i+1 < r ≤
L

(1+2a)i
, jn π

M < θn ≤

(jn + 1) π
M , n = 1, . . . , d − 2, s π

M < θd−1 ≤ (s + 1) π
M }, indexed

by (i, j1, . . . , jd−2, s), i = 0, 1, 2, . . ., jn = 0, . . . ,M − 1 for n =

1, . . . , d − 2, and s = 0, . . . , 2M − 1.

Since there are infinite quantization blocks in the support by
Definition 3.1, the quantizer needs infinite data rate. The quantizer
of infinite data rate is adopted firstly for highlighting the main re-
sults. In Section 4.4, a quantizer of finite data rate will be proposed.
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