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Optimal control problems in systems with symmetries and consensus/synchronization networks are
characterized by structural constraints that arise either from the underlying group structure or the lack
of absolute measurements for part of the state vector. Our objective is to design controller structures
and resulting control strategies that utilize limited information exchange between subsystems in large-
scale networks. To obtain controllers with low communication requirements, we seek solutions to
regularized versions of the #, optimal control problem. Non-smooth regularization terms are introduced
to tradeoff network performance with sparsity of the feedback-gain matrix. In contrast to earlier results,
our framework allows the state-space representations that are used to quantify the system’s performance
and sparsity of the static output-feedback controller to be expressed in different sets of coordinates.
We show how alternating direction method of multipliers can be leveraged to exploit the underlying
structure and compute sparsity-promoting controllers. In particular, for spatially-invariant systems, the
computational complexity of our algorithm scales linearly with the number of subsystems. We also
identify a class of optimal control problems that can be cast as semidefinite programs and provide an
example to illustrate our developments.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In large networks of dynamical systems centralized information
processing may impose prohibitively expensive communication
and computation burden [1,2]. This motivates the development
of theory and techniques for designing distributed controller ar-
chitectures that lead to favorable performance of large-scale net-
works. Recently, regularized versions of standard optimal control
problems were introduced as a means for achieving this goal [3-
6]. For example, in consensus and synchronization networks, it is
of interest to achieve desired objective using relative information
exchange between limited subset of nodes [7-18].

The objective of this paper is to design controllers that provide
adesired tradeoff between the network performance and the spar-
sity of the static output-feedback controller. This is accomplished
by regularizing the #, optimal control problem with a penalty on
communication requirements in the distributed controller. In con-
trast to previous work [3-5], this regularization penalty reflects the
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fact that sparsity should be enforced in a specific set of coordinates.
In [3-5], the elements of the state-feedback gain matrix were taken
to represent communication links. Herein, we present a unified
framework where a communication link is a linear function of the
elements of the output-feedback gain matrix.

The proposed framework addresses challenges that arise in
systems with invariances and symmetries, as well as consensus
and synchronization networks. For example, the block diagonal
structure of spatially-invariant systems in the spatial frequency
domain facilitates efficient computation of the optimal centralized
controllers [ 1]. However, since the sparsity requirements are typi-
cally expressed in the physical space, it is challenging to translate
them into frequency domain specifications. Furthermore, in wide-
area control of power networks [19-21], it is desired to design
the controllers that respect the structure of the original system:
in both open- and closed-loop networks, only relative rotor angle
differences between different generators are allowed to appear. To
deal with these structural requirements, we introduce a coordinate
transformation to eliminate the average mode and assure stabi-
lizability and detectability of the remaining modes. Once again,
it is desired to promote sparsity of the feedback gain in physical
domain and it is challenging to translate these requirements in the
transformed set of coordinates.
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We leverage the alternating direction method of multipliers
(ADMM) [22] to exploit the structure of the corresponding objec-
tive functions in the regularized optimal control problem. ADMM
alternates between optimizing closed-loop performance and pro-
moting sparsity of the feedback gain matrix. The sparsity promot-
ing step in ADMM has an explicit solution and the performance
optimization step is solved using Anderson-Moore and proximal
gradient methods. Our framework thus allows for performance and
sparsity requirements to be expressed in different set of coordi-
nates and facilitates efficient computation of sparse static output-
feedback controllers.

For undirected consensus networks, the proposed approach
admits a convex characterization. Furthermore, for systems with
invariances and symmetries, transform techniques are utilized to
gain additional computational advantage and improve efficiency.
For example, by bringing the matrices associated with a state-
space representation of a spatially-invariant system into a block-
diagonal form, the regularized optimal control problem amounts
to easily parallelizable task of solving a sequence of smaller, fully-
decoupled problems. While the computational complexity of algo-
rithms that do not exploit spatially invariant structure increases
cubicly with the number of subsystems, our algorithms exhibit a
linear growth. After having identified a controller structure, the
structured design step optimizes the network performance over
the identified structure.

Our presentation is organized as follows. In Section 2, we pro-
vide motivating examples and formulate the generalized sparsity-
promoting optimal control problem that we study in this paper.
In Section 3, we identify a class of convex problems that can
be cast as semidefinite programs. In Section 4, we leverage the
alternating direction method of multipliers algorithm to exploit
the structure of the corresponding objective functions and solve
the regularized optimal control problem. In Section 5, we illustrate
our developments using a synchronization network. We conclude
the paper in Section 6.

2. Motivation and background

We consider a class of control problems

X =AX+Bd+B,0

2= GR+Di )
J =GR
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where % is the state, d and ii are the disturbance and control
inputs, Z is the performance output, and y y is the measured output
The matrices C; and D are given by [Q”2 0] and [0 Rl/z]
with standard assumptions on stabilizability and detectability of
pairs (;\ ]§2) and (A Q”Z) Here, (-)* denotes complex-conjugate
transpose of a given matrix. The matrices Q = Q* > 0 and
R = R* > 0 are the state and control performance weights, and
the closed-loop system is given by

X=A-BKG)x+Bd
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We assume that there is a stabilizing feedback gain matrix K.

Our objective is to achieve a desired tradeoff between the 7,
performance of system (2) and the sparsity of a matrix that is re-
lated to the feedback gain matrix K through a linear transformation

T(IA(). To address this challenge we consider a regularized optimal
control problem

N>
|

minimize J(K)+ y g(T(K)) (3)
K

where](l%) is the H, norm of system (2), y is a positive regulariza-
tion parameter, and g(7 (IA<)) is a sparsity-promoting regularization
term (see Section 2.3 for details).

Linear transformation 7 (I% ) of the feedback gain K in (3) re-
flects the fact that sparsity should be enforced in a specific set of
coordinates. This characterization is more general than the one
considered in [3-5] where the sparsity-promoting optimal control
was originally introduced and algorithms were developed. In con-
trast to [3-5], where it was assumed that the state-space model is
given in physically meaningful coordinates, herein we only require
that the states in (2) are related to these coordinates via a linear
transformation 7. One such example arises in spatially invariant
systems where the “spatial frequency” domain is convenient for
minimizing quadratic performance objective [ 1], whereas sparsity
requirements are naturally expressed in the physical domain. An-
other class of problems is given by consensus and synchronization
networks where the absence of absolute measurements confines
standard control-theoretic requirements to a subspace of the orig-
inal state-space.

2.1. Problem formulation

As mentioned earlier, while it is convenient to formulate min-
imization of the quadratic performance index in terms of the
feedback gain K, it may be desirable to promote sparsity in a dif-
ferent set of coordinates. By introducing an additional optimization
variable K, we bring (3) into the following form,

minimize ](I%) + v g(K)
K.K . (4a)
subject to T(K)—K =0,

where g(K) is a sparsity-promoting regularization term and 7 is a
linear operator. In the #; setting, J(K) is given by

J(K) ==

- {trace ((Q + 65*1%*1?1%62 ))2) , K stabilizing (4b)

00, otherwise

where the closed-loop controllability Gramian X satisfies the Lya-
punov equation

(A - 32]%62)5\( + )A( (A — ézk&z)* + B]BT =0. (4c)

Clearly, for any feasible K and K, the optimal control problems (3)
and (4a) are equivalent. We note that the linear constraint in (4a)
is more general than the constraint considered in [3-5], where
K — K = 0. This introduces additional freedom in control design
and broadens applicability of the developed tools.

In the set of coordinates where it is desired to promote sparsity,
the closed-loop system takes the form

X =(A—-B,KG)x+Byd
_ Q1/2 (5)
£= [—R”ZK Gl

where K = T(IA<).

2.2. Examples

We next discuss several classes of problems that are encoun-
tered in applications. For each of these, the optimal control prob-
lem can be brought into the form (4) via a suitable change of
coordinates.
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