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a b s t r a c t

In this paper, we propose a state and unknown input observer for discrete-time linear systems with
bounded unknown inputs and measurement disturbances. The design procedure is formulated using a
set of linear matrix inequalities, and leverages delayed (or fixed-lag) estimates. The observer error states
and/or user-defined performance outputs are guaranteed to operate at certain performance bounds. Fur-
thermore, by employing sufficiently large delays, the observer is guaranteed to provide exact asymptotic
state and input estimates for minimum-phase systems. We demonstrate, via numerical examples, that
the proposed observer can be used for a wider class of systems than those satisfyingmatching conditions.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The problem of estimating the states of a dynamical system in
the presence of unknown disturbance inputs arises in a variety of
applications. Examples include security for cyber-physical systems
where the attack vector is modeled as an unknown input [1,2],
networked or decentralized control where control input informa-
tion at different nodes is unavailable and must be estimated [3],
and fault detection and estimation in large-scale systems [4]. Es-
timating system states in the presence of the disturbance inputs
is usually done through robust state estimators. Such formalisms
include set-valued observers [5–7] or H2/H∞ filtering [8–10].
For disturbances whose stochastic descriptions are known, robust
state estimators such as Kalman filters [11,12] and otherminimum
variance filters [13–15] have been widely investigated.

For the case of completely arbitrary unknown inputs, the cur-
rent literature contains a variety of unknown input observer (UIO)
architectures. A discussion of strong observability and conditions
for unknown input reconstruction can be found in [16] and [17].
Necessary and sufficient conditions for the existence of discrete
time UIOs are proposed in [18,19]. A relaxation of these stringent
conditions is discussed in [20] by allowing delays in estimation. Re-
cent discrete-time UIO methodologies have continued to explore
the systematic use of time delays, such as [21] which proposes the
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use of polynomial fitting to reconstruct the unknown input. Geo-
metric conditions for observer design with delayedmeasurements
are discussed in [22]. In [23], a delayed observer with fictitious
outputs is considered that enables state and unknown input re-
construction by exploiting left-invertibility properties of the sys-
tem. In [24], the dimensionality issue is improved by constructing
delayed observers for a reduced-order system. An adaptation gain
term is used in [25] to generate the unknown input using delayed
observers. Other formulations of unknown input observers are
found in [26–29].

One of the key insights established by the existing literature is
that perfect asymptotic state and input estimation is possible in
the presence of arbitrary unknown inputs if and only if the sys-
tem satisfies a so-called ‘minimum phase’ condition. Furthermore,
under this condition, real-time estimation may not be possible
unless the system satisfies certain ‘matching’ conditions, which is
the reason for introducing delays in estimation. These conditions
pose certain challenges. First, one may be interested in estimating
the states or inputs of non-minimum phase systems. Second, even
if the system is minimum phase, the delay required to completely
decouple the effects of the unknown inputs may be larger than
desired. Thus, there is a need to construct observers that generate
accurate estimates of plant states and unknown exogenous inputs
with specified maximum bounds on estimation delays.

In this paper we address the above issues by formulating
an observer that provides a guaranteed level of attenuation for
bounded unknown inputs with any specified maximum estimation
delay. Specifically, we provide sufficient conditions in the form
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of linear matrix inequalities (LMIs) for the construction of the
observer gains, and compute peak-gain performance bounds on
a pre-specified performance output of the observer. Additionally,
we propose sufficient conditions that ensure that the unknown
inputs can be reconstructed to a specified level of accuracy. Our
observer generalizes existing approaches in that it achieves perfect
attenuation of the unknown inputs if the system is minimum-
phase and the specified delay is sufficiently large; however, when
these conditions are not satisfied, the performance of our observer
degrades gracefully with the magnitude of the unknown inputs as
long as the system is detectable (which is a necessary condition for
the construction of any estimator).

2. Notation

We denote by R the set of real numbers, N the set of natural
numbers, and Rn×m the set of n × m matrices for any m, n ∈ N.
For any vector v ∈ Rn, we denote ∥v∥ =

√
v⊤v. For a sequence of

vectors {vk}
∞

k=0, we denote ∥v∥∞ ≜ supk≥0∥vk∥; consequently, we
say a sequence {vk} ∈ ℓ∞ if ∥v∥∞ < ∞. For any matrix P ∈ Rn×n,
we denote P⊤ as its transpose, and ∥P∥ as the maximum singular
value of P . For a symmetric matrix M = M⊤, we use the star
notation to avoid rewriting symmetric terms, that is,

[
Ma ⋆

M⊤
b Mc

]
≡[

Ma Mb
M⊤

b Mc

]
.

3. Problem statement and proposed solution

3.1. Problem statement

We consider a class of discrete-time linear systemsmodeled by

xk+1 = Axk + Bwk (1a)
yk = Cxk + Dwk, (1b)

where xk ∈ Rnx denotes the state vector at the kth sampled
time, and wk ∈ Rnw denotes the vector of exogenous unknown
inputs (e.g., disturbance inputs in the state and output vector fields,
measurement noise, attack vectors, etc.). The measured output is
denoted by yk ∈ Rny . The matrices A, B, C , D are of appropriate
dimensions. The initial sample time is k = 0. We make the
following assumptions on the class of systems considered in this
paper.

Assumption 1. The unknown inputs are bounded, that is, the
disturbance input sequence {wk} ∈ ℓ∞.

Note that the bounds mentioned in Assumption 1 are not nec-
essarily known by the designer.

Assumption 2. The matrix G ≜
[
B⊤ D⊤

]⊤ has full column rank.

Remark 1. Assumption 2 is mild as the linearly dependent
columns of G can be removed without affecting the column space
through which the exogenous inputs act.

Our objective is to construct a robust observer that recon-
structs the states xk of the plant while attenuating the effect of
the unknown exogenous input wk. As discussed in Section 1, we
will be considering observers that allow a pre-specified delay in
estimation. Before we introduce the specific observer structure, it
will be useful to introduce some notation. For any δ ∈ N, define

Yk:k+δ ≜
[
y⊤

k y⊤

k+1 · · · y⊤

k+δ−1 y⊤

k+δ

]⊤
. (2)

From the dynamics (1), we obtain

Yk:k+δ = Θδxk + ΓδWk:k+δ,

where Wk:k+δ =
[
w⊤

k w⊤

k+1 · · · w⊤

k+δ−1 w⊤

k+δ

]⊤, and

Θδ =

⎡⎢⎢⎣
C
CA
...

CAδ−1

⎤⎥⎥⎦ , Γδ =

⎡⎢⎢⎣
D 0 . . . 0
CB D . . . 0
...

...
. . .

...

CAδ−2B CAδ−3B . . . D

⎤⎥⎥⎦ .

3.2. Proposed observer architecture

Let δ ∈ N be a constant specifying the maximum delay (in
number of time-steps) that can be tolerated for estimating the state
of the system. The proposed observer has the form

x̂k+1 = Q x̂k + LYk:k+δ (3)

where x̂k ∈ Rnx is an estimate of the state xk at the kth time instant,
and Q ∈ Rnx×nx , L ∈ Rnx×(δ+1)ny are observer gain matrices to be
designed.

Note that the observer updates an estimate of the state xk based
on themeasurements of the system from time-step k to k+δ.When
δ = 0 the observer is in the form of a predictor (as it estimates xk+1
based on yk). When δ = 1, the observer estimates the state xk+1
using measurements up to yk+1, and when δ > 1, the observer is
analogous to a fixed-lag smoother from the filtering literature [30].
Note that one can equivalently view this observer as providing
an estimate of the state xk−δ+1 based on measurements from
time-step k − δ to the current time-step k.

Delayed observers are useful in process monitoring and fault
detection—in such cases, one can allow some delays in estimation
if that provides a better estimate of the state in the presence of
faults/attacks/disturbances; see, for example [31–34].

3.3. Observer error dynamics

Let the observer error at the kth time step be defined as ek =

x̂k − xk. Then from (1), (3), the error dynamics are governed by

ek+1 = x̂k+1 − xk+1

= Qek + (LΘδ − A + Q )xk + (LΓδ −Φδ)Wk:k+δ (4)

where

Φδ ≜
[
B 0 · · · 0

]
. (5)

We define a performance output

zk ≜ Hek (6)

where zk ∈ Rnz , and nz ≤ nx. This performance output is employed
to select subsets/linear combinations of error states that are most
crucial to the specific application, thereby requiring maximal dis-
turbance attenuation.

Beforewe formally state our objective,we present the following
definition from [35]:

Definition 1 (ℓ∞-stability with performance level γ ). Consider a
discrete-time error system

ek+1 = φ(k, ek, dk) (7a)

with state ek, disturbance input sequence {dk}, and performance
output

zk = ψ(ek) (7b)

where the input sequence {dk} ∈ ℓ∞. The system is said to be
globally uniformly ℓ∞-stablewith a specifiedperformance level
γ with respect to the disturbance input sequence {dk} if the
following conditions are satisfied:
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