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a b s t r a c t

Classical discrete-time adaptive controllers provide asymptotic stabilization. While the original adaptive
controllers did not handle noise or unmodelled dynamics well, redesigned versions were proven to have
some tolerance; however, neither exponential stabilization nor a bounded noise gain is typically proven.
Here we consider the first order case and prove that if the original, ideal, projection algorithm is used
in the estimation process (subject to the common assumption that the plant parameters lie in a convex,
compact set and that the parameter estimates are restricted to that set), then it guarantees linear-like
convolution bounds on the closed loop behaviour, which implies exponential stability and a bounded
noise gain, as well an easily proven tolerance to unmodelled dynamics and plant parameter variation.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The idea of adaptive control is for the controller to adapt to
the plant being controlled. The first general proofs that parameter
adaptive controllers could work came around 1980, e.g. see [1–5].
However, such controllerswere typically not robust to unmodelled
dynamics, did not tolerate time-variations well, had poor tran-
sient behaviour, and did not handle noise (or disturbances) well,
e.g. see [6].

During the 1980s and 1990s a great deal of effort was made to
address these shortcomings. The most common approach was to
make modifications to the estimator used in the adaptive control
laws so that the resulting controllers tolerated a small amount of
tolerance to unmodelled dynamics, slow time-variations, and/or
noise or disturbances, e.g. see [7–12]. Indeed, simply using pro-
jection (onto a convex set of admissible parameters) has proved
quite powerful, and the resulting controllers typically provide a
bounded-noise bounded-state property, and often tolerance of
some degree of unmodelled dynamics and time-variations — see
[11,13–17]. As far as the author is aware, a bounded gain on
the noise is proven only in one special case of [14]; however,
a convolution-like bound on the behaviour is not proven (this
is critical to proving that the approach can tolerate slow time-
variations — see Section 6), and a crisp bound on the effect of the
initial condition is not provided.

In this paper we revisit the discrete-time approach, such as
that of [3,18]. It is common to carry out parameter estimation
with either a least-squares algorithm or a projection algorithm.
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However, it is the norm in the literature to use a modified version
of the projection algorithm to avoid the issue of dividing by zero;
it turns out that an unexpected consequence of this minor adjust-
ment is that some inherent properties of the scheme are destroyed.
Here we consider the first order case and demonstrate that if the
original, ideal, projection algorithm is used (subject to the common
assumption that the plant parameters lie in a convex, compact set
and that the parameter estimates are restricted to that set) in con-
junction with the common one-step-ahead adaptive control law,
then we can obtain linear-like convolution bounds on the closed-
loop behaviour. This immediately confers exponential stability as
well as a bounded gain on the noise; this can be leveraged to prove
a degree of tolerance to parameter variation as well as unmodelled
dynamics. Here we have focused on the first order case since its
rich structure allows for a direct and self-contained analysis.

We use standard notation throughout the paper. We use the
Euclidean 2-norm for vectors and the corresponding induced norm
for matrices, and denote the norm of a vector or matrix by ∥ ·∥. We
let l∞ denote the set of real-valued bounded sequences. If S ⊂ Rp

is a convex and compact set, we define ∥S∥ := maxx∈S∥x∥ and the
function πS : Rp

→ S denotes the projection onto S; it is well-
known that πS is well-defined. With ε > 0, we let s(S, ε) denote
the set of sequences in x ∈ l∞ taking values in S and satisfying
|x(i + 1) − x(i)| ≤ ε for i ∈ Z.

2. The setup

Herewe startwith the first order linear time-invariant discrete-
time plant

y(t + 1) = ay(t) + bu(t) + n(t), y(t0) = y0 (1)
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where y(t) ∈ R is the state, u(t) ∈ R is the control input, and n(t) ∈

R is the noise (or disturbance). Here the pair
[
a
b

]
lies in a closed,

convex, bounded set S ⊂ R2; the closed and convex properties are
used to facilitate projection, while the bounded property is used to
prove uniform gains, decay rates, etc. To ensure controllability we

require that
[
a
0

]
̸∈ S for any a ∈ R.

Here we have an exogenous reference signal r(t) and the objec-
tive is to track it asymptotically; we assume that we know it one
step ahead, i.e. thatwe know r(t) at time t−1.Wewill be interested
in analysing the corresponding one-step-ahead control law when
the plant parameters are unknown. We use an estimator together
with the Certainty Equivalence Principle1 to form our control
law.

With φ(t) :=

[
y(t)
u(t)

]
and θ∗

:=

[
a
b

]
, we can rewrite the plant as

y(t + 1) = φ(t)T θ∗
+ n(t).

Given an estimate θ̂ (t) of θ∗ at time t , we define the prediction
error by

e(t + 1) := y(t + 1) − φ(t)T θ̂ (t); (2)

this is a measure of the error in θ̂ (t). The common way to obtain a
new estimate is from solving the optimization problem

argminθ {∥θ − θ̂ (t)∥ : y(t + 1) = φ(t)T θ},

yielding the ideal (projection) algorithm

θ̂ (t + 1) =

⎧⎨⎩θ̂ (t) if φ(t) = 0

θ̂ (t) +
φ(t)

φ(t)Tφ(t)
e(t + 1) otherwise.

(3)

Of course, if φ(t) is close to zero, numerical problems can occur, so
it is the norm in the literature (e.g. [3,18]) to replace this by the
following classical algorithm: with 0 < α < 2 and β > 0, define

θ̂ (t + 1) = θ̂ (t) +
αφ(t)

β + φ(t)Tφ(t)
e(t + 1). (4)

This latter algorithm is widely used and plays a role in many
discrete-time adaptive control algorithms; however, when this
algorithm is used all of the results are asymptotic, and exponential
stability and a bounded gain on the noise are never proven. It is not
hard to guess why — a careful look at the estimator shows that the
gain on the update law is small if φ(t) is small; we will discuss this
further once the control law is defined.

Here we will be using the ideal projection algorithm (3) to-
gether with projection onto S . With initial conditions of θ̂ (t0) =

θ0 ∈ S and y(t0) = y0 ∈ R, for t ≥ t0 + 1 we set

θ̌ (t + 1) =

⎧⎨⎩θ̂ (t) if φ(t) = 0

θ̂ (t) +
φ(t)

φ(t)Tφ(t)
e(t + 1) otherwise,

(5)

which we then project onto S:

θ̂ (t + 1) := πS(θ̌ (t + 1)). (6)

We partition θ̂ (t + 1) in a natural way as

θ̂ (t + 1) =:

[
â(t + 1)
b̂(t + 1)

]
.

If a and bwere known, then the one-step-ahead control law is

u(t) =
−a
b

y(t) +
1
b
r(t + 1),

1 The Certainty Equivalence Principle mandates that you use the parameter
estimates in the control law as if they are the true parameters — see [18] for a more
detailed discussion.

which ensures that y(t+1) = r(t+1). Since a and b are not known
here, we adopt the Certainty Equivalence counterpart:

u(t) = −
â(t)

b̂(t)  
=:f̂ (t)

y(t) +
1

b̂(t)
=:ĝ(t)

r(t + 1). (7)

This yields a closed-loop system equation of

y(t + 1) = [a + bf̂ (t)]y(t) + n(t) + bĝ(t)r(t + 1). (8)

The tracking error is defined by

ε(t) := y(t) − r(t);

from (7) we see that φ(t)T θ̂ (t) = r(t + 1), which, when combined
with (2), yields

e(t + 1) = ε(t + 1), t ≥ t0.

Before proceeding, we define some constants:

ā := max
{
|a| :

[
a
b

]
∈ S

}
, b̄ := max

{
|b| :

[
a
b

]
∈ S

}
,

f̄ := max
{⏐⏐⏐a

b

⏐⏐⏐ :

[
a
b

]
∈ S

}
, ḡ := max

{⏐⏐⏐⏐1b
⏐⏐⏐⏐ :

[
a
b

]
∈ S

}
,

g := min
{⏐⏐⏐⏐1b

⏐⏐⏐⏐ :

[
a
b

]
∈ S

}
.

3. Preliminary analysis

Analysing the closed-loop systemwill require a careful analysis
of the estimation algorithm. We define the parameter estimation
error by

θ̃ (t) := θ̂ (t) − θ∗,

and the corresponding Lyapunov function associated with θ̃ (t):

V (t) := θ̃ (t)T θ̃ (t).

In the following result we list a property of V (t); it is a generaliza-
tion of what is well-known for the classical algorithm (4).

Proposition 1. For every t0 ∈ Z, y0 ∈ R, θ0 ∈ S , θ∗
∈ S , n ∈ l∞ and

r ∈ l∞, when the adaptive controller (5)–(7) is applied to the plant
(1), the following holds:

V (t) ≤ V (t0) −
1
2

t−1∑
j=t0,φ(j)̸=0

[ε(j + 1)]2

∥φ(j)∥2

+ 2
t−1∑

j=t0,φ(j)̸=0

[n(j)]2

∥φ(j)∥2 , t ≥ t0 + 1.

Proof. See the Appendix.

In order to use this to prove themain result, we need to analyse
the time-varying first-order closed-loop system (8). The following
technical result proves useful.

Lemma 2. (i) With m ∈ N ∪ {∞}, suppose that ai ∈ R and c > 0
satisfy

m∑
i=0

a2i ≤ c. (9)

Then for every λ ∈ (0, 1), if we define γ := c
c+1
2 ( 1

λ
)

c
λ2

+1, then the
following holds:

|π
j−1
i=0 ai| ≤ γ λj, j = 0, 1, . . . ,m.
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