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a b s t r a c t

We consider optimal control problems for systems governed by mean-field stochastic differential equa-
tions, where the control enters both the drift and the diffusion coefficient. We study the relaxed model,
in which admissible controls are measure-valued processes and the relaxed state process is driven by
an orthogonal martingale measure, whose covariance measure is the relaxed control. This is a natural
extension of the original strict control problem, for which we prove the existence of an optimal control.
Then, we derive optimality necessary conditions for this problem, in terms of two adjoint processes
extending the known results to the case of relaxed controls.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we deal with optimal control of systems driven
bymean-field stochastic differential equations (MFSDE),where the
coefficients depend not only on the state but also on its distri-
bution. This mean-field equation, represents in some sense the
average behavior of an infinite number of particles, see [1,2] for
details. Since the earlier papers [3,4], mean-field control theory
has raised a lot of interest, motivated by applications to various
fields such as game theory,mathematical finance, communications
networks, management of oil resources. Mean-field control prob-
lems occur in many applications, such as in a continuous-time
Markowitz’s mean-variance portfolio selection model where the
variance term involves a quadratic function of the expectation. The
inclusion of this mean-field terms in the coefficients introduces
time inconsistency, leading to the failure of Bellman principle.
For this kind of problems, the stochastic maximum principle, pro-
vides a powerful tool to solve them, see [5,6] and the references
therein. The first objective of the present paper is to investigate
the problem of existence of an optimal control. It is well known
that in the absence of convexity assumptions, this problem has no
optimal solution. Therefore it is natural to embed the set of strict
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controls into a wider class of measure valued controls, enjoying
good compactness properties, called relaxed controls. We show
that the right state process associated with a relaxed control, sat-
isfies a MFSDE driven by an orthogonal martingale measure rather
than a Brownian motion. For this model, we prove that the strict
and relaxed control problems have the same value function and
that an optimal relaxed control exists. Our result extends in partic-
ular [7–10] to mean field controls and [11] to the case of a MFSDE
with a controlled diffusion coefficient. The proof is based on tight-
ness properties of the underlying processes and the Skorokhod
selection theorem. In a second step, we establish necessary con-
ditions for optimality in the form of a relaxed stochastic maximum
principle, obtained via the first and second order adjoint processes.
This result generalizes Peng’s stochastic maximum principle [12],
to mean field control problems and [5] to relaxed controls. The
other advantage is that ourmaximumprinciple applies to a natural
class of controls, which is the closure of the class of strict controls,
for whichwe have existence of an optimal control. The proof of the
main result is based on the approximation of the relaxed control
problem by a sequence of strict control problems. Then Ekeland’s
variational principle is applied to get necessary conditions of near-
optimality, for the sequence of near optimal strict controls. The
result is obtained by a passage to the limit in the state equation
as well as in the adjoint processes. The resulting first and second
order adjoint processes are solutions of linear BSDEs driven by a
Brownian motion and an orthogonal square integrable martingale.
Moreover, our result is given via an approximation procedure, so
that it could be convenient for numerical computation.
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2. Assumptions and preliminaries

Let (Ω,F, P) be a probability space, equipped with a filtration
(Ft), satisfying the usual conditions and (Wt) a (Ft , P)-Brownian
motion. Let A be some compact metric space called the action
space. A strict control (ut) is a measurable, Ft-adapted process
with values in the action spaceA. We denote Uad the space of strict
controls.

The state process corresponding to a strict control is the
unique solution, of themean-field stochastic differential equations
(MFSDE)

dXt = b(t, Xt , E(Xt ), ut )dt + σ (t, Xt , E(Xt ), ut )dWt; X0 = x (2.1)

and the corresponding cost functional is given by

J(u) = E
(∫ T

0
h(t, Xt ), E(Xt ), ut

)
dt + g(XT , E(XT )).

The coefficients of the state equation as well as of the cost func-
tional are of mean-field type, in the sense that they depend not
only on the state process, but also on its marginal law, through its
expectation.

The objective is to minimize J(u) over the space Uad , that is to
find u∗

∈ Uad such that J(u∗) = inf {J(u), u ∈ Uad} .

Let us consider the following assumptions which will be used
in different combinations throughout the paper.

(H1) b : [0, T ]×R×R×A −→ R,σ : [0, T ]×R×R×A −→ R are
bounded continuous functions such that b(t, ., ., a) and σ (t, ., ., a)
are Lipschitz continuous in (x, y).

(H2) h : [0, T ] × R × R × A −→ R and g : R × R −→ R, are
bounded continuous functions such that h(t, ., ., a) and g(., .) are
Lipschitz continuous in (x, y).

(H3) b(t, ., ., a), σ (t, ., ., a), h(t, ., ., a) and g(., .) are twice con-
tinuously differentiable with respect to (x, y), and their derivatives
are bounded and continuous in (x, y, a).

Without loss of generality, the coefficients are assumed to be
one dimensional as in [5], to avoid heavy notations in the definition
of adjoint processes.

Under assumption (H1), according to [1] Prop.1.2, for each u ∈

Uad the MFSDE(2.1) has a unique strong solution, such that for
every p > 0 we have E(|Xt |

p) < +∞. Moreover the cost functional
is well defined.

3. The relaxed control problem

3.1. The space of relaxed controls

As it iswell known in control theory, in the absence of convexity
conditions, an optimal control may fail to exist in the set Uad of
strict controls (see e.g. [9]). This suggests that the set of strict
controls is too narrow and should be embedded into a wider
class of relaxed controls, with nice compactness properties. For
the relaxed model, to be a true extension of the original control
problem, the following both conditions must be satisfied:

(i) The value functions of the original and the relaxed control
problems must be equal.

(ii) The relaxed control problemmust have an optimal solution.
The idea of relaxed control is to replace the A-valued process

(ut ) with a P(A)-valued process (µt ), where P(A) is the space of
probability measures equipped with the topology of weak conver-
gence. Then (µt ) may be identified as a random product measure
on [0, T ] × A, whose projection on [0, T ] coincides with Lebesgue
measure. Let V be the set of product measures µ on [0, T ] × A
whose projection on [0, T ] coincides with the Lebesgue measure
dt . It is clear that every µ in V may be disintegrated as µ =

dt.µt (da), where µt (da) is a transition probability. The elements of

V are called Young measures in deterministic theory. V as a closed
subspace of the space of positive Radon measures M+([0, T ] × A)
is compact for the topology of weak convergence. In fact it can
be proved that it is compact also for the topology of stable con-
vergence, where test functions are measurable, bounded functions
f (t, a) continuous in a, see [8] for further details.

Definition 3.1. A relaxed control on the filtered probability space
(Ω,F,Ft , P) is a random variable µ = dt.µt (da) with values in V,
such that µt (da) is progressively measurable with respect to (Ft )
and such that for each t , 1(0,t].µ is Ft-measurable.

Remark 3.2. The set Uad of strict controls is embedded into the set
of relaxed controls by identifying ut with dtδut (da).

3.2. The relaxed state equation

The question now is to define the natural state process as-
sociated to a relaxed control. In deterministic control or in the
stochastic theory where only the drift is controlled, one has just to
replace in Eq. (2.1) the drift by the same drift integrated against the
relaxed control. Nowwe are in a situation where both the drift and
the diffusion coefficient are controlled. Following [1] Prop. 1.10, the
existence of a weak solution of Eq. (2.1) associated with a strict
control u is equivalent to the existence of a solution for the non
linear martingale problem:

f (Xt ) − f (X0) −

∫ t

0
LPXs f (s, Xs, us) ds is a P-martingale,

for every f ∈ C2
b , for each t > 0,where L is the infinitesimal generator

associated with Eq. (2.1),

Lν f (t, x, a) =
1
2
σ 2 ∂2f

∂x2
(t, x, a) + b

∂ f
∂x

(t, x, a),

b = b(t, x, ⟨y, ν⟩ , a) and σ 2
= σ 2(t, x, ⟨y, ν⟩ , a) where ν ∈

P1(R), the space of probability measures on R.
Therefore, the natural relaxedmartingale problemassociated to

a relaxed control is defined as follows:

f (Xt ) − f (X0) −

∫ t

0

∫
A
LPXs f (s, Xs, a)µs(da)ds

is a P-martingale for each f ∈ C2
b , for eacht > 0.

The following theorem gives a pathwise representation of the so-
lution of the relaxed martingale problem, in terms of a mean-field
stochastic differential equation driven by an orthogonalmartingale
measure.

Theorem 3.3. (1) Let P be a solution of the relaxed martingale
problem. Then P is the law of an adapted, continuous process X defined
on an extension of the space (Ω,F,Ft , P), which is a solution of the
following MFSDE:

dXt =

∫
A
b(t, Xt , E (Xt) , a)µt (da)dt

+

∫
A

σ (t, Xt , E(Xt ), a)M(da, dt); X0 = x (3.1)

where M is an orthogonal continuous martingale measure, with in-
tensity dtµt (da).

(2) If the coefficients b and σ are Lipschitz in x, y, uniformly in t
and a, Eq. (3.1) has a unique pathwise solution.

Proof. (1)The proof is based essentially on the same arguments as
in [13], Theorem IV-2 and [1], Prop. 1.10.

(2) Since the coefficients are Lipschitz continuous, then follow-
ing the same steps as in [1,13], it is not difficult to prove that
Eq. (3.1) has a unique solution such that for every p > 0 we have
E(supt∈[0,T ]|Xt |

p) < +∞. ■



Download English Version:

https://daneshyari.com/en/article/5010598

Download Persian Version:

https://daneshyari.com/article/5010598

Daneshyari.com

https://daneshyari.com/en/article/5010598
https://daneshyari.com/article/5010598
https://daneshyari.com

