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a b s t r a c t

This paper presents a novel approach to the problem of almost global attitude stabilization. The reduced
attitude is steered along a geodesic path on the n− 1-sphere. Meanwhile, the full attitude is stabilized on
SO(n). This action, essentially two maneuvers in sequel, is fused into one smooth motion. Our algorithm
is useful in applications where stabilization of the reduced attitude takes precedence over stabilization of
the full attitude. A two parameter feedback gain affords further trade-offs between the full and reduced
attitude convergence speed. The closed loop kinematics on SO(3) are solved for the states as functions of
time and the initial conditions, providing precise knowledge of the transient dynamics. The exact solutions
also help us to characterize the asymptotic behavior of the system such as establishing the region of
attraction by straightforward evaluation of limits. The geometric flavor of these ideas is illustrated by
a numerical example.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The attitude tracking problem for a rigid-body is well-known
in the literature. It is interesting from a theoretical point of view
due to the nonlinear state equations and the topology of the
underlying state space SO(3). Application oriented approaches
to attitude control often make use of parameterizations such as
Euler angles or unit quaternions to represent SO(3). The choice of
parametrization is not without importance since it may affect the
limits of control performance [1–3]. An often cited result states
that global stability cannot be achieved on SO(3) by means of
a continuous, time-invariant feedback [3]. It is however possible
to achieve almost global asymptotic stability through continuous
time-invariant feedback [2,4], almost semi-global stability [5], or
global stability by means of a hybrid control approach [6]. These
subjects have also been studied with regards to the reduced at-
titude, i.e., on the 2-sphere [2,7]. The problem of pose control on
SE(3) is strongly related to the aforementioned problems. Many of
the previously referenced results can be combined with position
control algorithms in an inner-and-outer-loop configuration to
achieve pose stabilization [8].

Like [2,4–6], this paper provides a novel approach to the at-
titude stabilization problem. The generalized full attitude is sta-
bilized on SO(n). Meanwhile, the generalized reduced attitude is
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steered along a geodesic path on the (n − 1)-sphere. The motion
of the reduced attitude is decoupled from the remaining degree of
freedom of the full attitude but not vice versa. An action consisting
of two sequentialmaneuvers is thus fused into one smoothmotion.
This algorithm is of use in applications where the stabilization
of the reduced attitude takes precedence over that of the full
attitude. A two parameter feedback gain affords further trade-offs
regarding the full and reduced attitude convergence speed. The
kinematic model is suited for applications in the field of visual
servo control [9,10]. Consider a camera that is tracking an object.
The goal is to keep the camera pointing towards the objectwhereas
the roll angle is of secondary importance. The proposed algorithm
solves this problem by steering the principal axis directly towards
the object while simultaneously stabilizing the roll angles without
resorting to a non-smooth control consisting of two separate mo-
tions.

While literature on the kinematics and dynamics of
n-dimensional rigid-bodies (e.g., [11]) may primarily be theoret-
ically motivated, the developments also provide a unified frame-
work for the cases of n ∈ {2, 3}. The generalized reduced attitude
encompasses all orientations in physical space: the heading on a
circle, the reduced attitude on the sphere, and the unit quaternions
on the 3-sphere. Relevant literature includes works concerning
stabilization [12], synchronization [13], and estimation [14] on
SO(n). It also includes the previous work [15,16] of the authors.
Note that work on SO(n) for n ≥ 4 is not only of theoretical
concern; it also finds applications in the visualization of high-
dimensional data [17].
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Exact solutions to a closed-loop system yields insights into both
its transient and asymptotic behaviors and may therefore be of
value in applications. The literature on exact solutions to attitude
dynamics may, roughly speaking, be divided into two separate
categories. First, there are a number of works where the exact
solutions are obtained during the control design process, e.g., using
exact linearization [18], optimal control design techniques such
as the Pontryagin maximum principle [19], or in the process of
building an attitude observer [20]. Second, there are studies of
the equations defining rigid-body dynamics under a set of spe-
cific assumptions whereby the exact solutions become one of the
main results [21–23]. This paper belongs to the second category.
The closed-loop kinematics on SO(3) are solved for the states
as functions of time and the initial conditions, providing precise
knowledge of the workings of the transient dynamics.

Recent work on the problem of finding exact solutions to
closed-loop systems on SO(n) includes [15,16]. Related but some-
what different problems are addressed in [21–23]. Earlier work
[24] by the authors is strongly related but also underdeveloped; its
scope is limited to the case of SO(3). This paper concerns a general-
ization of the equations studied in [16,24]. The results of [16] is also
generalized in [15], partly towards application inmodel-predictive
control and sampled control systems and without focus on the
behavior of the reduced attitude. The work [25] addresses the
problem of continuous actuation under discrete-time sampling.
The exact solutions provide an alternative to the zero-order hold
technique. The algorithm alternates in a fashion that is continuous
in time between the closed-loop and open-loop versions of a single
control law. The feedback law proposed in this paper can also be
used in such applications by virtue of the exact solutions.

2. Preliminaries

Let A,B ∈ Cn×n. The spectrum of A is written as σ (A). Denote
the transpose of A by A⊤ and the complex conjugate by A∗. The
inner product is defined by ⟨A,B⟩ = tr(A⊤B) and the Frobenius
norm by ∥A∥F = ⟨A,A⟩

1
2 . The outer product of two vectors x, y ∈

Rn is defined as x ⊗ y = xy⊤. The commutator of two matrices is
[A,B] = AB − BA and the anti-commutator is {A,B} = AB + BA.

The special orthogonal group isSO(n) = {R ∈ Rn×n
| R−1

= R⊤,
detR = 1}. The special orthogonal Lie algebra is so(n) = {S ∈

Rn×n
| S⊤

= −S}. The n-sphere is Sn
= {x ∈ Rn+1

| ∥x∥ = 1}.
The geodesic distance between x, y ∈ Sn is given by ϑ(x, y) =

arccos⟨x, y⟩. An almost globally asymptotically stable equilibrium
is stable and attractive from all initial conditions in the state space
except for a set of zero measure. The terms attitude stabilization,
reduced attitude stabilization, and geodesic path refer to the sta-
bilization problem on SO(n), the n-sphere, and curves that are
geodesic up to parametrization respectively.

Real matrix valued, real matrix variable hyperbolic functions
are defined by means of the matrix exponential, e.g., cosh :

Rn×n
→ GL(n) is given by cosh(A) =

1
2 [exp(A) + exp(−A)] for

all A ∈ Rn×n. Let Log : C\{0} → C denote the principal logarithm,
i.e., Log z = log r + iϑ , where z = reiϑ and ϑ ∈ (−π, π]. Let
Atanh : C \ {−1, 1} → C denote the principal inverse hyperbolic
tangent, i.e., Atanh z =

1
2 [Log(1 + z) − Log(1 − z)]. Note that

tanh : C \ {−1, 1} → C satisfies tanh Atanh z = z for all z ∈

C \ {−1, 1}. Extend these definitions to the extended real number
line R ∪ {−∞, ∞} and the Riemann sphere C ∪ {∞} by letting
log 0 = −∞, Atanh 1 = ∞, tanh∞ = 1 etc. [26].

3. Problem description

3.1. Stabilization and tracking

The orientation or attitude of a rigid body is represented by a
rotation matrix that transforms the body fixed frame into a given

inertial fixed frame. Let X ∈ SO(3) denote this rotation matrix.
The kinematics of a rigid body dictates that Ẋ = ΩX, where
Ω ∈ so(3) is a skew-symmetric matrix representing the angular
velocity vector of the rigid body. The attitude stabilization problem
is the problem of designing a feedback law that stabilizes a desired
frame Xd which without loss of generality can be taken to be the
identity matrix.

The attitude tracking problem concerns the design of anΩ that
rotates X into a desired moving frame Xd ∈ SO(3). Assume that
Xd is generated by Ẋd = ΩdXd, where Ωd ∈ so(3) is known.
Furthermore assume that the relative rotation error R = X⊤

d X ∈

SO(3) is known to the feedback algorithm.Note that rotatingX into
Xd is equivalent to rotating R into I. Moreover,

Ṙ = Ẋ⊤

d X + X⊤

d Ẋ = (ΩdXd)⊤X + X⊤

d ΩX
= −X⊤

d ΩdXdR + X⊤

d ΩXdR = X⊤

d (−Ωd + Ω)XdR = UR, (1)

where U = X⊤

d (−Ωd + Ω)Xd ∈ so(3). The kinematic level attitude
tracking problem in the case of knownRd,Ωd can hence be reduced
to the attitude stabilization problem. It is also clear that attitude
stabilization is a special case of attitude tracking.

From a mathematical perspective it is appealing to strive for
generalization. Consider the evolution of a positively oriented n-
dimensional orthogonal frame represented by R ∈ SO(n). The
dynamics are given by

Ṙ = UR, (2)

where U ∈ so(n). The kinematic level generalized attitude stabi-
lization problem concerns the design of an U that stabilizes the
identitymatrix onSO(n). It is assumed thatR can be actuated along
any direction of its tangent plane at the identity TISO(n) = so(n).
Note that SO(n) is invariant under the kinematics (2), i.e., any
solution R(t) to (2) that satisfies R(0) = R0 ∈ SO(n) remains in
SO(n) for all t ∈ [0, ∞).

3.2. The reduced attitude

It is sometimes preferable to only consider n−1 of the 1
2n(n−1)

degrees of freedomonSO(n). In the case ofSO(3), these correspond
to the reduced attitude [2]. The reduced attitude consists of the
points on the unit sphere S2

≃ SO(3)/SO(2). It formalizes the
notion of pointing orientations such as the two degrees of rota-
tional freedom possessed by objects with cylindrical symmetry.
The reduced attitude is also employed in redundant tasks like
robotic spray painting andwelding that only require the utilization
of two of the usual three degrees of rotational freedom in physical
space [27].

Reduced attitude control by means of kinematic actuation is a
special case of control on the unit n-sphere, Sn

= {x ∈ Rn+1
|

∥x∥ = 1}. The generalized reduced attitude can be used to model
all physical rotations. The heading of a two-dimensional rigid-body
is an element of S1, the pointing direction of a cylindrical rigid-
body is an element of S2, and the full attitude can be parametrized
by S3 through a composition of two maps via the unit quaternions
S0(H) = {q ∈ H | |q| = 1}.

Let e1 ∈ Sn−1 be a vector expressed in the body-fixed frame
of an n-dimensional rigid body. The reduced attitude x ∈ Sn−1

is defined as the inertial frame coordinates of e1, i.e., x = Xe1.
The reduced attitude stabilization problem is solved by a feedback
algorithm that can turn x into any desired value xd ∈ Sn−1. Note
that ẋ = Ẋe1 = ΩXe1 = Ωx. Assume that xd = Xde1 satisfies
ẋd = Ωdxd. Set r = X⊤

d x = X⊤

d Xe1 = Re1. Turning x into xd is
equivalent to turning r into e1. Moreover, ṙ = Ṙe1 = URe1 = Ur,
where U = X⊤

d (−Ωd + Ω)Xd ∈ so(n), like in the SO(3) case. The
evolution of r is controllable on Sn−1 [28].
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