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a b s t r a c t

Many characterizations of linear system controllability revolve around the eigenvalue spectrum of the
controllability gramian, which is a function of the network dynamics. The gramian spectrumdescribes the
minimumenergies associatedwith inducingmovement along orthogonal directions inRn. Here,wederive
an enhanced interpretation of the spectral properties of the gramian in non-minimum energy regimes.
Indeed, in a non-minimum energetic regime, an ‘excess’ of energy is available to the system for at least
(n − 1) orthogonal state transfers. We show that the utility of this excess energy can be quantified in
terms of input orientation, or, simply, the angle between two competing inputs. Based on this notion,
we derive the gramian bispectrum, which describes the relationship between energy and orientation
among pairs of orthogonal state transfers. The bispectrum reflects a fundamental tradeoff between the
energetic and orientation costs in the control of a linear system. We show how this bispectral analysis
can provide control characterizations that are not apparent from inspection of the gramian spectrum
alone.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation

A long-standing topic in control theory, with recent appli-
cations in network control [1–3], involves the development of
analyses to quantify the controllability of linear systems [4–6].
Many of the approaches that have been developed to address this
issue involve study of the spectral properties of the controllability
gramian, which, for a controllable linear time-invariant system in
the typical form

ẋ(t) = Ax(t) + Bu(t) (1)

is defined as

W(T ) =

∫ T

0
eA(T−τ )B(τ )B′(τ )eA

′(T−τ )dτ . (2)

Each eigenvalue of induce motion in the direction of its associ-
ated eigenvector. Thus, summary metrics that describe the en-
ergetic costs of controlling a linear system can be derived from
the gramian spectrum. Such metrics include the trace of the
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gramian [7,8], the log of its determinant [7], and the maximum
eigenvalue of the inverse gramian [7,8]. The latter, in particular,
is the ‘worst-case’ minimum energy required to reach the unit
hypersphere at a prescribed time T .

In this paper we seek to characterize the controllability of
a system assuming that we have at least this minimum energy
available to meet control objectives. That is, we assume that the
entire unit hypersphere is reachable at time T . What then, can
be said about the system under consideration? For a non-uniform
gramian spectrum, there will be a gradation of energetic costs, so
that we may steer the system in other directions (than the ‘worst-
case’ direction) with less (or much less) energy expenditure. To
what use, then, is the excess energy which we have available? Is
there ameasure of control flexibility that can be realized under this
‘surplus energy’ scenario?

To answer these questions we consider, in addition to energy,
the relative orientation between two inputs u1(t) and u2(t), which
transfer the state of the system to two different endpoints at
time T . Assuming these inputs possess average energy γu1 and
γu2 , then over the time horizon [0, T ] the relative orientation, or,
mathematically, the average cosine of the angle between u1(t) and
u2(t), is:

1
T√

γu1γu2

∫ T

0
u′

1(τ )u2(τ )dτ . (3)
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If γu1 and γu2 are minimal for the transfers in question, then (3) is
fixed since u1(t) and u2(t) can assume only one form. Given excess
energy, inputs achieving the transfers may assume a range of pos-
sible relative orientations. We propose that this range constitutes
a measure of the aforementioned control flexibility, and we pro-
vide an analytical development that makes this notion concrete.
Specifically, in this paper we make the following contributions:

1. As a function of available energy, we derive the minimum
relative orientation (or, average angle) between two in-
puts, each inducing a transfer to points along a different
eigenvector ofW−1. A small relative orientation implies that
the inputs are relatively flexible in their orientation range.
Indeed, we show that as energy tends to infinity the angular
difference tends to zero, so that the inputs may become ar-
bitrarily similar in their geometry. The derivation leverages
our previous optimal control results in [9] and [10].

2. We derive a second-order spectrum, termed the gramian
bispectrum that exactly quantifies the tradeoff between en-
ergy and orientation, in the above sense, for each pair of
eigenvalues of the gramian.

3. We demonstrate how the proposed bispectrummay be used
to compare the relative utility of energy in linear systems.
We provide examples of such comparisons that show how a
bispectral analysis may reveal control properties not appar-
ent from the spectrum alone.

2. Problem formulation

2.1. Geometric interpretation of the controllability gramian

Our subsequent development will pivot on the spectrum Λ of
the controllability gramian inverse W−1 (see (2)), defined as the
collection of its eigenvalues with ordered labeling, i.e.,

Λ = {λ1, . . . , λn} , λ1 ≥ λ2 ≥ · · · ≥ λn (4)

and corresponding eigenvectors v1, . . . , vn .
Since the minimum-energy cost of driving the system from the

origin at time t = 0 to final point xf at time t = T is given
by c(xf ) =

∫ T
0 u′(τ )u′(τ )dτ = x′

fW
−1(T )xf , for a fixed energy

c(xf ) = c∗ the gramian essentially prescribes a reachable ellipsoid
in n-dimensional space, with vertices located at λ1v1, . . . , λnvn.
This ellipsoid we formally define as

Ξ ≡
{
x ∈ Rn

|x′W−1(T )x = c∗
}
. (5)

Thus, the surface of Ξ encodes the maximal distance to which
trajectories can attain at time T under inputs with total energy c∗

(starting from the origin). A common way to assay the controlla-
bility of a linear system is to deduce the minimum energy, cmin, so
that system is guaranteed access to a unit-radius hypersphere in
Rn (i.e., min c∗ such thatΞ ⊃

{
x ∈ Rn

|x′x = 1
}
), which as follows

from (5), is simply λ1 in (4).
However, as posed in the Introduction, in this scenario, most of

the hypersphere is reachable with an excess of energy (Fig. 1) and
we would like to quantify the utility of this excess. Carrying forth
the geometric interpretation, it is perhaps intuitive to propose a
quantification involving the ratio λi/λ1, i = 2, . . . , n, i.e., the
eccentricity of the ellipse made by intersectingΞ with the (v1, vi)-
plane.

Aswewill show, this quantity not only results in a usefulmetric
for excess energy utilization, but has a precise interpretation in
terms of the relative orientation attainable by putative inputs to
the system at hand. We first make concrete the notion of orienta-
tion range.

Fig. 1. Unit circle with ellipse prescribed by W(T )−1 of a stable two-dimensional
system with the two eigenvectors of W(T )−1 Since the ellipse represents the
reachable set with fixed energy λ1 , the distance between the ellipse and circle, in
the direction of v2 , encodes the amount of excess energy available if we desire to
steer the system to v2 . Note that the figure represents an abstract state space for a
2D linear system, and thus the axes have no explicit units.

2.2. Input orientation and orientation range

We begin by defining formally the expression for relative ori-
entation between two inputs, introduced in (3). For our purposes
we will assume one of the inputs is known a priori.

Definition 1 (Input Orientation). For reference inputu1(t) and ‘free’
input u2(t) guiding a system of the form (1) over the time inter-
val [0, T ], we define the relative orientation dJ(u1(t),u2(t), t ∈

[0, T ])–for ease of notation simplified to dJ(u1,u2)–as follows:

dJ(u1,u2) =
1

T√
γu1γu2

∫ T

0
u′

1(τ )u2(τ )dτ , (6)

where

γu1 =
1
T

∫ T

0
u′

1(τ )u1(τ )dτ , γu2 =
1
T

∫ T

0
u′

2(τ )u2(τ )dτ (7)

are the average energies (up to time T ) of u1(t) and u2(t), respec-
tively.

We again note that, although we refer to dJ(u1,u2) as the rela-
tive orientation between inputs u1 and u2, in a strict mathematical
sense it quantifies the average cosine of the angle between the two
inputs.

Under our assumption, the reference is known (thus γu1 is
known), and we seek, given some chosen available energy γu2 ,
to quantify our freedom in allowing u2(t) to assume different
geometries while still accomplishing a desired state transfer. We
now propose a notion of orientation range based on the maximum
similarity between two inputs of fixed energy:

Definition 2 (Maximum Similarity). For inputs of energy γu1 , γu2 ,
the maximum similarity is defined as
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