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a b s t r a c t

In this paper, an output error method is proposed for the identification of continuous-time systems with
time delay from sampled data. The challenge of time delay system identification lies in the presence of
nonlinear time delays in models, then starting value-based optimization methods may be trapped easily
by local minima. In order to improve the convergence performance to the choice of initial parameters,
several approaches to smooth the loss function are presented. It is shown that the loss function may
possessmany localminimawhendata are regularly sampledwith the inter-sample behavior of zero-order
hold. Interestingly, irregular sampling can be an efficient approach to overcome these local minima. To
achieve superior convergence performance, an over-parametrization approach incorporating a low-pass
filtering technique is proposed to enlarge the convergence region. Theoretical and simulated results are
presented to demonstrate the effectiveness of the proposed method.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Control-oriented system identification, which aims to build
mathematical models for characterizing system behaviors be-
tween the manipulated and controlled variables from experimen-
tal data, has been increasingly appealing for obtaining good control
systemperformance.With the fast development of digital comput-
ers, system identification methods have been developed based on
discrete-time (DT) models in terms of shift operators to facilitate
the implementation. Recently, there has been a resurgence of in-
terest in the study of continuous-time (CT) model identification,
which is motivated by the advantages of CT models, for example:
physical insights provided by CT model parameters; flexibility in
dealing with fractional time delays; invariance of model parame-
ters in handling irregularly sampled data [1,2], note that in such
case DT model parameters are usually time-varying even if the
original systems are stationary and invariant. A common feature
of industrial processes is the presence of a time delay between
the input command and output response. Modeling of these sys-
tems, typically by low order linear models plus time delay, has
been widely recognized for obtaining good approximations of the
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system input–output behaviors. Identification of process models
from sampled data is the problem thatwill be studied in this paper.

The main difficulty of process model identification arises from
the presence of a nonlinear parameter, i.e. the timedelay, in a linear
model. Here a nonlinear parameter means that the differentiation
with respect to this parameter does not yield a constant. Then some
traditional methods for linear system identification cannot be ap-
plied directly. The study of time delay system identification has led
in the literature to several methods, recent reviews can be found
in [3–5]. The existing methods fall into three categories roughly:
(1) identification using different experiment tests, e.g. step or relay
feedback tests [5–8], persistent excitation tests [9,10]; (2) iden-
tification using different strategies to estimate the whole model
parameters, e.g. one-step approaches that estimate all the param-
eters simultaneously [11–14], two-step approaches that estimate
the rational model parameters and time delay separately [9,10];
(3) identification using different criteria for optimal model fitting,
e.g. cross-correlation maximization [15,16], output or prediction
error minimization [10,11].

The simplified refined instrumental variable method for CT
systems (SRIVC) has been popular for direct CT modeling [17–19].
This method was first proposed in [20] and later developed in
e.g. [21–23]. By extension, a SRIVC-based method for time delay
systems (TDSRIVC) was proposed in [10] to identify simple process
models from irregularly sampled data, inwhich a numerical search
was incorporated to solve for the optimal time delay. Since the
numerical search is quite sensitive to the choice of initial time
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delays, a low-pass filtering technique was suggested in [10,24]
in order to widen the attraction region, therefore improving the
convergence performance. However, the study in [10] is still far
from being enough. In this paper, we present an output error
(OE) method for the considered identification problem, in which
the rational model parameters and time delay are simultaneously
estimated. As the contributions of this paper, three issues related
to this identification problem are studied, i.e. the convergence of
parameter estimates, the merit of irregular sampling, and possi-
ble strategies to widen the convergence region. It is shown that
irregular sampling may smooth the local minima originating from
the inter-sample behavior of zero-order hold (ZOH). Note that
irregular sampling only gives local refinements to the loss function,
while the overall function shape still remains the same. More
powerful approaches are based on low-pass filtering to widen
the convergence region [10,24]. Though this technique has been
proposed some time ago, strategies for optimal implementation
have seldom been investigated, and this is an issue that will be
addressed in this paper.

1.1. Problem formulation

Consider a linear time-invariant, single-input single-output, CT
system with input u(t) and output y(t) related by

S :

{
x(t) = Go(p)u(t − τo) =

Bo(p)
Ao(p)

u(t − τo)

y(tk) = x(tk) + e(tk)
(1)

where 0 ≤ τo < ∞ is the pure time delay, x(t) the state response
of the system, and y(tk) the observed output at time-instant tk.
{e(tk)} is a DT white noise process of any possible distribution
uncorrelated to the excitation signal. Moreover, as required by
Lemma 4, u(t) is locally integrable and persistently exciting of
order no less than na + nb + 2. Bo(p) and Ao(p) are the system
polynomials in the differential operator p, i.e. p =

d
dt

Bo(p) = bo0p
nb + · · · + bonb−1p + bonb (2)

Ao(p) = ao0p
na + · · · + aona−1p + 1, na ≥ nb + 1. (3)

It is assumed that the system is stable, or equivalently, Ao(p) has all
roots located on the left-half plane. Ao(p) and Bo(p) are co-prime.
The polynomial degrees satisfy na ≥ nb + 1, this assumption will
become clear once Eq. (18) is presented. The unknown parameters
are stacked in

ρ⊤

o =
[
θ⊤

o , τo
]

(4)

θ⊤

o =
[
ao0, . . . , a

o
na−1, b

o
0, . . . , b

o
nb

]
∈ Rna+nb+1. (5)

Assume that the input–output signals are observed at regular or
irregular time-instants {t1, . . . , tN} with t1 ≥ 0, the resulting
sampled data are denoted by ZN

= {u(tk), y(tk)}Nk=1. The (time-
varying) sampling interval is denoted by

hk = tk+1 − tk, k = 1, 2, . . . ,N. (6)

The initial conditions of both input/output signals are assumed to
be zero. It is also necessary to constrain the final observation time-
instant tN > τo in order to ensure that the system is sufficiently
excited during the interval (t1, tN ). In direct CT identification, it
is necessary to know, or at least to make some assumptions on,
inter-sample behaviors of signals in order to reconstruct their CT
counterparts from DT data. In this paper we assume that u(t) is
piecewise constant (namely ZOH) between contiguous sampling
instants, this assumption is feasible since it has been widely used
in applications, e.g. computer control systems. On the other hand,
the inter-sample behavior of y(t) is usually unknown. A first-
order hold (FOH) assumption typically gives rise to a satisfactory
approximation if the sampling interval is small.

Finally, provided that the model structure, and the polynomial
degrees {na, nb} are known, the identification objective is to esti-
mate the parameter vector θo and time delay τo from the sampled
data ZN .

1.2. CT OE optimization problem

When the model structure, the polynomial degrees {na, nb}

are known, System (1) can be represented by the following
parametrized CT OE (COE) process model, in which B(p, θ) and
A(p, θ) have the same structures as Bo(p) and Ao(p), but the depen-
dence on the parameter vector θ should be emphasized

M :

⎧⎨⎩x̂(t) = G(p, θ)u(t − τ ) =
B(p, θ)
A(p, θ)

u(t − τ )

y(tk) = x̂(tk) + ϵ(tk)
(7)

where ϵ(tk) is the output error. The unknown parameters in the
above model can be obtained by minimizing the OE loss function

ρ̂ = argmin
ρ

V (ρ) (8)

V (ρ) =
1

2(N − r)

N∑
k=r+1

ϵ2(tk) (9)

where r is chosen to ensure tr < τ ≤ tr+1. This choice is because
u(tk − τ ) = 0 and y(tk) = e(tk) for tk < τ , only the data
{u(tk), y(tk)}Nk=r+1 are informative for identification.

The remainder of this paper is arranged as follows: the COE
method for time delay systems (TDCOE) is presented in Sec-
tion 2, with the convergence analysis demonstrated in Section 3;
subsequently, the merit of irregular sampling is investigated in
Section 4; the over-parametrization approach towiden the conver-
gence region is described in Section 5; then, numerical examples
are given in Section 6 to illustrate the effectiveness of the proposed
approaches; finally, conclusions are drawn in Section 7.

2. TDCOE method

Awell-knownmethod to solve (8) is the nonlinear least-squares
method, which searches iteratively the optimal value of ρ starting
from an initial guess ρ̂0 as follows

ρ̂j+1
= ρ̂

j
+ µj[

∇
2V (ρ̂j)

]−1
∇V (ρ̂j) (10)

where µj is the step length, ∇V (ρ̂j) and ∇
2V (ρ̂j) are the gradient

vector and Hessian matrix of V (ρ̂j), respectively. In view of (9),
∇V (ρ̂j) can be readily computed by

∇V (ρ̂j) =
1

N − r
J(ρ̂j)ϵ(ρ̂j) (11)

where

ϵ(ρ̂j) =
[
ϵ(tr+1) · · · ϵ(tN )

]⊤ (12)

J(ρ̂j) = −

⎡⎢⎢⎢⎢⎢⎣
∂ϵ(tr+1)

∂ρ̂
j
1

· · ·
∂ϵ(tN )

∂ρ̂
j
1

...
...

∂ϵ(tr+1)

∂ρ̂
j
ℓ

· · ·
∂ϵ(tN )

∂ρ̂
j
ℓ

⎤⎥⎥⎥⎥⎥⎦ , ℓ = na + nb + 2 (13)

with ρ̂j
i denotes the ith element of the vector ρ̂j. In order to avoid

computing second order derivatives, the Gauss–Newtonmethod is
used to approximate ∇

2V (ρ̂j)

∇
2V (ρ̂j) =

1
N − r

J(ρ̂j)J⊤(ρ̂j). (14)
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