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a b s t r a c t

Predictor state feedback solves the problem of stabilizing a discrete-time linear system with input delay
by predicting the future state with the solution of the state equation and thus rendering the closed-loop
system free of delay. The solution of the state equation contains a term that is the convolution of the past
control input with the state transition matrix. Thus, the implementation of the resulting predictor state
feedback law involves iterative calculation of the control signal. A truncated predictor feedback law results
when the convolution term in the state prediction is discarded. When the feedback gain is constructed
from the solution of a certain parameterized Lyapunov equation, the truncated predictor feedback law
has been shown to achieve asymptotic stabilization of a system that is not exponentially unstable in the
presence of an arbitrarily large delay by tuning the value of the parameter small enough. In this paper, we
extend this result to exponentially unstable systems. Stability analysis leads to a bound on the delay and
a range of the values of the parameter for which the closed-loop system is asymptotically stable as long
as the delay is within the bound. The corresponding output feedback result is also derived.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Time delay in the control input, as a cause of performance
deterioration, is ubiquitous in control engineering. A basic
control problem for systems with time delay is the problem of
stabilization. Thanks to intensive research during the past few
decades, various control designmethods have been developed and
numerous stability conditions established for linear systems with
input delay (see, for example, [1–15]). Both continuous-time and
discrete-time systems have been studied.

Among the various methods that achieve asymptotic stabiliza-
tion for a linear system with input delay, predictor state feed-
back [16] is particularly appealing. It feeds the prediction of the
future state into input of the system and results in a closed-loop
system free of delay. The state prediction is simply the solution of
the state equation of the system. As a result, the predictor feedback
consists of two terms, one corresponding to the zero input solu-
tion, which is the product of the transitionmatrix from the current
state to the future state in the time equal to the amount of delay,
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and the other the zero state solution that involves the convolution
of the state transition matrix and the past input. The convolution
with the past input increases the complexity in the implementa-
tion of the feedback law. Discarding the term associated with the
zero state solution in the predictor feedback law leads to the so-
called truncated predictor feedback (TPF), which leads to remark-
able simplification.

Beginning from [17], the TPF has been utilized to stabilize
linear systems with input delay. In particular, in [17], it was
established that, a continuous-time linear system that is not
exponentially unstable can be asymptotically stabilized by the TPF
for an arbitrarily large delay if the feedback gain is constructed
by the low gain feedback design technique [18] and the value
of the low gain parameter is sufficiently small. Following [17,19]
reached a parallel conclusion in the discrete-time setting, that is,
a discrete-time linear system that is not exponentially unstable
can be stabilized by the low gain based TPF in the presence of
an arbitrarily large delay as long as the low gain parameter is
tuned sufficiently small. The low gain feedback designs adopted
in [17,19] are based on eigenstructure assignment [18]. Alternative
TPF designs that adopt a parametric Lyapunov equation based low
gain feedback design [20,21] were later proposed in [22,23] for
continuous-time and discrete-time systems, respectively.

As an extension of the results in [22], [24] develops the
truncated predictor feedback for exponentially unstable systems.
The feedback law in the TPF law was designed based on the same
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parametric Lyapunov equation. A bound on the delay that can be
tolerated by the TPF law is derived which is inversely proportional
to the sum of the unstable poles of the open loop system. The range
of the values of the parameter is determined for which the closed-
loop system is asymptotically stable as long as the delay is within
the bound.

The aim of this paper is to extend the results in [24] to the
discrete-time setting. We consider a general discrete-time linear
system, which could be exponentially unstable, subject to time-
varying delay in the input. A discrete-time parametric Lyapunov
equation based approach is adopted to construct feedback gain
in the TPF law. Properties of the solution, some of which do not
have a continuous-time counterparts, of the parametric Lyapunov
equation are established.With the help of these properties, a delay
bound and explicit conditions on the feedback gain parameter
are then determined under which the asymptotic stability of
the system is guaranteed. It is also observed that, as all the
exponentially unstable poles of the systemapproach theunit circle,
the delay bound goes to infinity. This observation is consistent
with the results in [19,23], which showed that for a system whose
poles are inside or on the unit circle, asymptotic stabilization can
be achieved for an arbitrarily large delay by the TPF. We will also
develop output feedback results.

The remainder of this paper is organized as follows. Section 2
states the problem and establishes properties of the solution to
the discrete-time parametric Lyapunov equation for exponentially
unstable systems. In Section 3, a delay bound and explicit
conditions on the parameter are established under which the
asymptotic stability of the closed-loop system is guaranteed.
Output feedback results are then developed in Section 4. Numerical
examples are provided in Section 5. Section 6 concludes the paper.

Notation. Throughout the paper, we use standard notation. In
particular, we use R, N and Z to denote the sets of all real numbers,
all nonnegative integers and all integers, respectively. Also, for
a, b ∈ Z, a ≤ b, I[a, b] is the set of all integers in [a, b]. For
a real matrix M , ∥M∥ is its induced norm. Finally, Np denotes a
neighborhood of a point p ∈ R.

2. Problem statement and preliminaries

In this paper, we consider a discrete-time linear system with
time-varying input delay,x(k + 1) = Ax(k)+ Bu(φ(k)), k ≥ 0,

y(k) = Cx(k),
x(k) = ψ(k), k ∈ I[−K , 0],

(1)

where x(k) ∈ Rn, u(k) ∈ Rm and y(k) ∈ Rq are the state vector,
input vector and output vector, respectively. The time-varying
delay functionφ(k) : N → Z is assumed to have the standard form
of φ(k) = k−κ(k), whose inverse function φ−1(k) : Z → N exists
and is known. Also, κ(k) ∈ N → N denotes time-varying delay
that satisfies κ(k) ∈ I[0, K ], where K ∈ N \ {0} is the maximal
value of the delay. We note that φ−1(k) exists as long as φ(k) is
a strictly increasing function of k. The initial condition is given by
ψ(k) for k ∈ I[−K , 0].

It is also assumed that (A, B) is stabilizable and (A, C) is
detectable. Without loss of generality, we further assume that the
pair (A, B) is in the form of

A =


AI 0
0 AO


, B =


BI
BO


, (2)

where all eigenvalues of AI are inside the unit circle and all
eigenvalues of AO are on or outside the unit circle.

Consider the following feedback law for system (1),

u(φ(k)) = F(γ )x(k), (3)

where F(γ ), γ > 0, is a parametric feedback gain matrix which
renders A + BF(γ ) Schur stable. Under the feedback law (3), the
closed-loop system is given by
x(k + 1) = (A + BF(γ ))x(k), (4)
which is asymptotically stable because the matrix A + BF(γ ) is
Schur stable.

Since φ−1(k) exists and is known, we obtain from (3) that

u(k) = F(γ )x(φ−1(k)). (5)
Recall that φ(k) = k − κ(k) and κ(k) ≥ 0 for k ∈ N, we have
k = φ(φ−1(k)) = φ−1(k) − κ(φ−1(k)) ≤ φ−1(k). Thus, the right
side of (5) contains future state of x(k), namely, x(φ−1(k)). This
future state can be predicted with the solution of the closed-loop
state equation as,

x(φ−1(k)) = Aφ
−1(k)−kx(k)

+

φ−1(k)−k
s=1

As−1Bu

φ−1(k)− s − κ(φ−1(k)− s)


. (6)

Substitution of (6) in (5) yields the classical predictor state
feedback law,

u(k) = F(γ )Aφ
−1(k)−kx(k)

+ F(γ )
φ−1(k)−k

s=1

As−1Bu

φ−1(k)− s − κ(φ−1(k)− s)


. (7)

Discarding the term containing the summation sign that involves
the past values of the control input results in the truncated
predictor feedback law,

u(k) = F(γ )Aφ
−1(k)−kx(k). (8)

Following [21], for a controllable pair (A, B) with A being
nonsingular, F(γ ) can be constructed as

F(γ ) = −(I + BTP(γ )B)−1BTP(γ )A, (9)
where P(γ ) is the unique positive definite solution to the discrete-
time parametric algebraic Riccati equation

ATPA − P − ATPB(I + BTPB)−1BTPA = −γ P. (10)
A necessary and sufficient condition for the existence and
uniqueness of such a solution P(γ ) is that

γ ∈ (1 − |λ(A)|2min, 1), (11)
where |λ(A)|min denotes the minimal modulus of all eigenvalues
of A. We note that P(γ ) = W−1(γ ), where W (γ ) is the unique
positive definite solution to the discrete-time Lyapunov equation

W (γ )−
1

1 − γ
AW (γ )AT

= −BBT, (12)

which is equivalent to (10).
The objective of this paper is to establish a bound on the delay

and a range of the values of the parameter for which the closed-
loop system consisting the system (1) and the truncated predictor
feedback law (8) is asymptotically stable as long as the delay is
within the bound. The corresponding output feedback result will
also be derived. To this end, we need to establish some properties
of the solution of the algebraic Riccati equation (10) as well as to
generalize an existing version of Jensen’s inequality.

The following two lemmas establish properties of P(γ ) for a
general system (1) that may be exponentially unstable. The proofs
follow similar steps as in the proof of Proposition 2, Theorem 1
and Corollary 2 in [23], where the systems considered are not
exponentially unstable.

Lemma 1. For a controllable pair (A, B) with A being nonsingular,
and any nonnegative integers a and b, the following inequality holds
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