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a b s t r a c t

In this paper, we propose an extension of the invariance principle, which is uniform with respect to
parameter uncertainties, for the class of periodic ordinary differential equations. This extension allows
the derivative of the auxiliary function V , commonly called a Lyapunov function, to be positive in some
bounded sets. This important feature has the potential to simplify the problem of exhibiting a function
of Lyapunov-type and allows the application of the principle in systems that cannot be treated with the
conventional principle, either due to the nonexistence of a Lyapunov-type function or due to the difficulty
in exhibiting it. The extension of the invariance principle is useful to obtain estimates of attractors and
regions of attraction that are uniformwith respect to parameters. The study of synchronization of periodic
coupled systems illustrates an application of the principle.

© 2016 Published by Elsevier B.V.

1. Introduction

The invariance principle studies the asymptotic behavior of
solutions of differential equations of a system without the need
of explicitly calculating them [1–4]. For this purpose, an auxiliary
scalar function, called Lyapunov function, is used. Despite its
importance in many applications, the invariance principle has
some limitations. Themain one is the nonexistence of a systematic
method for finding the auxiliary scalar function or Lyapunov
function. One of the most restrictive conditions in the search
for this function is that its derivative has to be negative semi-
definite along system trajectories. In several systems, such as
chaotic systemswith a degree of complexity in their trajectories, it
is difficult to find a scalar function satisfying the requirements of
the invariance principle and in particular satisfying the condition
of the derivative to be negative semi-definite.

A more general version of the invariance principle, called
the extension of the invariance principle, simplifies in part this
problemby allowing the derivative of the scalar function to assume
positive values in some bounded regions of the state space. This
extension has been proven for the continuous case [5,6], for
the discrete case [7,8], for a class of differential equations with
bounded delay [9] and for a class of switched systems [10].
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Besides its importance in the theory of stability of nonlinear
dynamical systems, the extension of the invariance principle has
been successfully applied to stability analysis of electric power
systems [11] and problems of synchronization [12,5,8], which was
the major motivation of this work.

The extension of the invariance principle does not require the
derivative of the scalar function to be negative semi-definite, with
a potential to simplify the search for this function. Consequently,
many problems that could not be treated by this theory, can now
be resolved by the extension of the invariance principle.

This work aims to investigate the existence of extensions of the
invariance principle for another class of differential equations, the
class of periodic ordinary differential equations.

An invariance principle for periodic nonautonomous differen-
tial equations was proved by LaSalle [13] and nearly periodic by
Miller [14]. In this paper, an extension of LaSalle’s result is proven
for the class of periodic systems. This extension follows the same
description of the extension proven in [5,6], relaxing the conditions
on the derivative of the auxiliary function V , which now can as-
sume positive values in some bounded regions of the state space.

All results of this paper for periodic systems equally apply to
autonomous systems,which are periodic systemswith an arbitrary
period. Consequently, the extensions of the invariance principle
proven in [5,6] are particular cases of the ones proven in this paper.

This paper is organized as follows. In Section 2, some properties
of periodic dynamical systems are presented and the classic
version of the invariance principle for periodic systems is reviewed.
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Finally, the extension of this principle and its uniform version are
developed in Sections 3 and 4, respectively. Examples illustrate
the application of the developed extension in Sections 3 and 4. An
application of the results developed in this paper to the problem
of synchronization of coupled periodic systems is explored in
Section 5.

2. Preliminaries and the invariance principle for periodic
systems

Consider the nonlinear nonautonomous dynamic system

ẋ = f (t, x) (1)

where x ∈ Rn, t ∈ R e f : R × Rn
→ Rn is a C1-function. The solu-

tion of (1) starting in x0 at time t0 will be denoted s(t, t0, x0). Solu-
tions of (1) satisfy the following properties of a flow: s(t0, t0, x0) =

x0, ∀x0 ∈ Rn and s(t, t1, s(t1, t0, x0)) = s(t, t0, x0), ∀t, t1, t0 ∈

R, ∀x0 ∈ Rn.

Definition 2.1. System (1) is periodic with period T ∈ R if f (t +

T , x) = f (t, x), ∀t ∈ R, ∀x ∈ Rn.

For a periodic system with period T , solutions have the
following additional property: s(t + kT , t0 + kT , x0) = s(t, t0, x0),
∀t, t0 ∈ R, ∀x0 ∈ Rn, ∀k ∈ Z [15].

Definition 2.2. Let x0 ∈ Rn and t0 ∈ R. A point p ∈ Rn is
called a limit point of the trajectory s(t, t0, x0) if there is a se-
quence {ti} of numbers in [t0, +∞) such that ti → +∞ and
limi→∞ ∥p − s(ti, t0, x0)∥ = 0. The set of limit points of s(·, t0, x0)
is called limit set of s(·, t0, x0) and is denoted Ω(t0, x0).

The property of being closed is true for all limit sets. Further-
more, when the solution is bounded, the limit set is nonempty,
bounded and d(s(t, t0, x0), Ω(t0, x0)) → 0 when t → +∞ [15].

Next we will discuss some properties of invariance of limit sets
of periodic systems.

Definition 2.3. A set M ⊆ Rn is called an invariant set with re-
spect to the differential equation (1) if, for each x0 ∈ M , there exists
t0 ∈ R such that s(t, t0, x0) ∈ M, ∀t ∈ (ω−, ω+), where (ω−, ω+)
is the maximal interval of existence of solution s(t, t0, x0).

Definition 2.4. A set M ⊆ Rn is called a positively invariant set
with respect to the differential equation (1) if, for each x0 ∈ M ,
there exists t0 ∈ R such that s(t, t0, x0) ∈ M, ∀t ∈ [t0, ω+).

In general, limits sets of nonautonomous systems are not
invariant. In the particular case of periodic and autonomous
systems, limits sets are also invariant.

Lemma 2.1 ([15]). Let x0 ∈ Rn and t0 ∈ R. Let s(·, t0, x0) be the
solution of system (1) starting in x0 ∈ Rn at time t0 ∈ R and assume s
is defined for all t ∈ [t0, ∞). Suppose that system (1) is periodic, then
Ω(t0, x0) is an invariant set.

The proof of Lemma 2.1 explores the periodicity of the vector
field to prove invariance. Although this proof is already known in
literature [15], it will be presented here because it contains ideas
thatwill be strongly explored in the proofs of the results developed
in this paper.

Proof of Lemma 2.1. Let T be the period of (1) and let p ∈

Ω(t0, x0). We will show the existence of an initial time τ ∈ R+

such that s(t, τ , p) ∈ Ω(t0, x0), ∀ t ∈ (ω−, ω+).
Take p ∈ Ω(t0, x0). Then there is a sequence {ti}, with ti → ∞

as i → ∞, such that limi→∞ ∥p − s(ti, t0, x0)∥ = 0.

Fig. 1. Geometric interpretation of the invariance principle for periodic systems.

For each i, find ki ∈ Z such that ti − kiT ∈ [0, T ). Then the
sequence {τi} = {ti − kiT } is bounded and therefore admits a con-
vergent subsequence. Choose such a subsequence {τ ′

i } = {t ′i −k′

iT }

and rewrite it as {τi}. Let τ ∈ [0, T ] be the limit of this subsequence.
Solutions depend continuously on the initial conditions and on the
time, then s(t, τ , p) = limi→∞ s[t, τ , s(ti, t0, x0)] = limi→∞ s[t +

kiT , τ + kiT , s(ti, t0, x0)] = limi→∞ s[t + kiT , ti, s(ti, t0, x0)] =

limi→∞ s[t + kiT , t0, x0], where we use the fact that τ =

limi→∞(ti − kiT ). Therefore s(t, τ , p) ∈ Ω(t0, x0). �

For a scalar C1-function V : Rn
→ R, two level sets will be

considered:

S(L) := {x ∈ Rn
: ∃t ∈ R such that V (t, x) < L}

and

A(L) := {x ∈ Rn
: V (t, x) < L, ∀t ∈ R}.

Clearly A(L) ⊆ S(L). These sets will be important for the
development of the invariance principle and its extensions.

Under the assumption that V̇ ≤ 0, for all (t, x) ∈ R × Rn, it
can be easily proven that S(L) is a positively invariant set. Level
set A(L) is not necessarily positively invariant, but it also can be
proven that solutions starting in A(L) do not leave S(L). Exploring
these invariance properties of level sets, the invariance principle
for periodic systems [15] is stated as follows:

Theorem 2.1 ([15] Invariance Principle for Periodic Systems). Sup-
pose that system (1) is periodic and V : R × Rn

→ R is a peri-
odic C1-function with the same period of system (1). Let L ∈ R be
a real constant, and consider the sets S(L) and A(L). Suppose that
S(L) is bounded and V̇ (t, x) ≤ 0, ∀t ∈ R, ∀x ∈ S(L). Define
E := {x ∈ S(L) : ∃t ∈ R such that V̇ (t, x) = 0} and let B be the
largest invariant set contained in E. Then

(i) x0 ∈ A(L) ⇒ s(t, t0, x0) → B as t → +∞ for all t0 ∈ R;
(ii) x0 ∈ S(L) ⇒ ∃t0 such that s(t, t0, x0) → B as t → +∞.

Fig. 1 illustrates Theorem 2.1. For the initial condition x1 ∈ A(L)
in Fig. 1, the solution does not leave S(L) and tends to the largest
invariant set in E for any t0. For the initial conditions at x0 and x2
in S(L), there are t0 and t2 such that the solutions starting in x0 and
x2 at these times, respectively, do not leave S(L) and tend to the
largest invariant set B in E.

3. Extension of the invariance principle for periodic systems

In this section, an extension of the invariance principle for
periodic systems is developed. The key feature of this extension
is the possibility of the derivative of the auxiliary scalar function V
to assume positive values in bounded regions of the state space.

When the derivative of V is not negative semi-definite, we can
still achieve similar properties of invariance of level sets S(L) and
A(L) imposing some control over the regions where the derivative
of V is positive. Lemmas 3.1 and 3.2 study these properties.
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