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a b s t r a c t

This paper develops Lyapunov and converse Lyapunov theorems for stochastic semistable nonlinear
dynamical systems. Semistability is the property whereby the solutions of a stochastic dynamical system
almost surely converge to (not necessarily isolated) Lyapunov stable in probability equilibrium points
determined by the system initial conditions. Specifically, we provide necessary and sufficient Lyapunov
conditions for stochastic semistability and show that stochastic semistability implies the existence of
a continuous Lyapunov function whose infinitesimal generator decreases along the dynamical system
trajectories and is such that the Lyapunov function satisfies inequalities involving the average distance to
the set of equilibria.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The aim of this paper is to develop Lyapunov and converse
Lyapunov theorems for stochastic semistability. Semistability is
the property of a dynamical system whereby its trajectories
converge to (not necessarily isolated) Lyapunov stable equilibria.
Semistability, rather than asymptotic stability, is the appropriate
notion of stability for systems having a continuum of equilibria.
Examples of such systems arise in chemical kinetics [1], adaptive
control [2], compartmentalmodeling [3], thermodynamics [4] and,
more recently, collaborative control of a network of autonomous
agents [5,6]. In all these examples, the system trajectories converge
to limit points that depend continuously on the system initial
conditions.

It is important to note that semistability is not merely equiva-
lent to asymptotic stability of the set of equilibria. Indeed, it is pos-
sible for a trajectory to converge to the set of equilibria without
converging to any one equilibrium point as examples in [2] show.
Conversely, semistability does not imply that the equilibrium set is
asymptotically stable in any accepted sense. This is because stabil-
ity of sets is defined in terms of distance (especially in case of non-
compact sets), and it is possible to construct examples inwhich the
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system is semistable, but the domain of semistability contains no
ε-neighborhood (defined in terms of the distance) of the (noncom-
pact) equilibrium set, thus ruling out asymptotic stability of the
equilibrium set. Hence, semistability and set stability of the equi-
librium set are independent notions.

For linear deterministic systems, semistability was originally
defined in [7] and applied to matrix second-order systems in [8].
Refs. [2,9] extended the notion of semistability to nonlinear de-
terministic systems and gave Lyapunov results for semistability.
Semistabilitywas also addressed in [5,6] for consensus protocols in
nonlinear dynamical networks, with [6] giving new Lyapunov the-
orems as well as the first converse Lyapunov theorem for semista-
bility which holds with a smooth (i.e., infinitely differentiable)
Lyapunov function.

In numerous applications where dynamical models are used
to describe the behavior of natural and engineering systems,
stochastic components and random disturbances are incorporated
into the models. The stochastic aspects of the models are used to
quantify system uncertainty as well as the dynamic relationships
of sequences of random events between system–environment
interactions. For example, stochastic modeling can be used to
capture communication uncertainty between agents in a network,
wherein the evolution of each link of the random network
communication topology follows a Markov process. In this case,
the development of almost sure consensus of multiagent systems
with nonlinear stochastic dynamics under distributed nonlinear
consensus protocols is necessary. And fromapractical viewpoint, it
is not sufficient to only guarantee that the network almost surely
converges to a state of consensus since steady-state convergence
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is not sufficient to guarantee that small perturbations from the
limiting state will lead to only small transient excursions from
a state of consensus. It is also necessary to guarantee that the
equilibrium states representing consensus are Lyapunov stable in
probability, and consequently, stochastically semistable.

Using a notion of stochastic semistability, almost sure consen-
sus of multiagent systems under distributed nonlinear protocols
over random networks is addressed in [10]. The authors in [10]
consider stochastic systems driven by a discrete-valued, right-
continuous strongMarkov excitation process. In this paper, we ex-
tend the notion of semistability to nonlinear stochastic systems
involving Markov diffusion processes that have a continuum of
equilibrium solutions. In particular, we develop almost sure con-
vergence and stochastic Lyapunov stability properties to address
almost sure semistability requiring the trajectories of a nonlin-
ear stochastic dynamical system to converge almost surely to a
set of equilibrium solutions, wherein every equilibrium solution in
the set is almost surely Lyapunov stable. Furthermore, we provide
necessary and sufficient Lyapunov conditions for semistability and
show that semistability implies the existence of a continuous Lya-
punov function whose infinitesimal generator decreases along the
dynamical system trajectories and is such that the Lyapunov func-
tion satisfies inequalities involving the average distance to the set
of equilibria.

2. Notation, definitions, and mathematical preliminaries

In this section, we establish notation, definitions, and develop
mathematical preliminaries necessary for developing the results
in this paper. Specifically, R denotes the set of real numbers, R+

denotes the set of positive real numbers, R+ denotes the set of
nonnegative numbers, and Rn denotes the set of n× 1 real column
vectors. We write Bε(x) for the open ball centered at x with radius
ε, ∥·∥ for the Euclidean vector norm, ∥·∥F for the Frobeniusmatrix
norm, AT for the transpose of the matrix A, and In or I for the n × n
identity matrix. Furthermore, Bn denotes the σ -algebra of Borel
sets in D ⊆ Rn and S denotes a σ -algebra generated on a set
S ⊆ Rn.

We model a stochastic dynamical system G generating a
stochastic process x : R+ × Ω → D on a complete probability
space (Ω,F , P), whereΩ denotes the sample space, F denotes a
σ -algebra of subsets ofΩ , and P defines a probability measure on
the σ -algebra F ; that is, P is a nonnegative countably additive set
function on F such that P(Ω) = 1 [11]. We equip the probability
space (Ω,F , P) with a continuous-time filtration {Ft}t≥0 gener-
ated by a standard d-dimensional Wiener process w(t) up to time
t inclusively and satisfying Fτ ⊂ Ft , 0 ≤ τ < t , such that {ω ∈

Ω : x(t, ω) ∈ B} ∈ Ft , t ≥ 0, for all Borel sets B ⊂ Rn contained
in the Borel σ -algebra Bn. Here we use the notation x(t) to repre-
sent the stochastic process x(t, ω) omitting its dependence on ω.

We denote the set of equivalence classes of measurable,
integrable, and square-integrable Rn or Rn×m (depending on
context) valued random processes on (Ω,F , P) over the semi-
infinite parameter space [0,∞) by L0(Ω,F , P),L1(Ω,F , P),
and L2(Ω,F , P), respectively, where the equivalence relation is
the one induced by P-almost-sure equality. In particular, elements
of L0(Ω,F , P) take finite values P-almost surely (a.s.). Hence,
depending on the context, Rn will denote either the set of n × 1
real variables or the subspace of L0(Ω,F , P) comprising of Rn

random processes that are constant almost surely. All inequalities
and equalities involving random processes on (Ω,F , P) are to be
understood to hold P-almost surely.

Given x ∈ L0(Ω,F , P), {x = 0} denotes the set {ω ∈ Ω :

x(t, ω) = 0}, and so on. Given x ∈ L0(Ω,F , P) and E ∈ F ,
we say x is nonzero on E if P({x = 0} ∩ E) = 0. Furthermore,
given x ∈ L1(Ω,F , P) and a σ -algebra E ⊆ F ,EP

[x] and EP
[x|E]

denote, respectively, the expectation of the random variable x and
the conditional expectation of x given E , with all moments taken
under the measure P. Here, for simplicity of exposition, we omit
the symbol P in denoting expectation, and similarly for conditional
expectation. Specifically, we denote the expectation with respect
to the probability space (Ω,F , P) by E[ · ], and similarly for
conditional expectation.

Finally,wewrite tr(·) for the trace operator, (·)−1 for the inverse
operator, V ′(x) , ∂V (x)

∂x for the Fréchet derivative of V at x, V ′′(x) ,
∂2V (x)
∂x2

for the Hessian of V at x, and Hn for the Hilbert space of
random vectors x ∈ Rn with finite average power, that is, Hn ,
{x : Ω → Rn

: E[xTx] < ∞}. For an open set D ⊆ Rn,HD
n ,

{x ∈ Hn : x : Ω → D} denotes the set of all the random
vectors in Hn induced by D . Similarly, for every x0 ∈ Rn,H

x0
n ,

{x ∈ Hn : x a.s.
= x0}. Furthermore, C2 denotes the space of real-

valued functions V : D → R that are two-times continuously
differentiable with respect to x ∈ D ⊆ Rn.

Definition 2.1 ([12]). Let (S,S) and (T ,T) be measurable spaces,
and letµ : S ×T → R+. If the functionµ(s, B) is S-measurable in
s ∈ S for a fixed B ∈ T andµ(s, B) is a probabilitymeasure in B ∈ T

for a fixed s ∈ S, then µ is called a (probability) kernel from S to T .
Furthermore, for s ≤ t , the function µs,t : S × S → R is called
a regular conditional probability measure ifµs,t(·,S) is measurable,
µs,t(S, ·) is a probability measure, and µs,t(·, ·) satisfies

µs,t(x(s), B) = P(x(t) ∈ B|x(s))

= P(x(t) ∈ B|Fs) a.s., x(·) ∈ Hn. (1)

Any family of regular conditional probabilitymeasures {µs,t}s≤t
satisfying the Chapman–Kolmogorov equation [11] is called a
semigroup of Markov kernels. The Markov kernels are called time
homogeneous if and only if µs,t = µ0,t−s holds for all s ≤ t .

Consider the nonlinear stochastic dynamical system G given by

dx(t) = f (x(t))dt + D(x(t))dw(t), x(0) a.s.
= x0, t ∈ Ix(0), (2)

where, for every t ∈ Ix0 , x(t) ∈ HD
n is a Ft-measurable ran-

dom state vector, x(0) ∈ H
x0
n ,D ⊆ Rn is an open set with

0 ∈ D, w(t) is a d-dimensional independent standard Wiener
process (i.e., Brownian motion) defined on a complete fil-
tered probability space (Ω,F , {Ft}t≥0, P), x(0) is independent of
(w(t) − w(0)), t ≥ 0, f : D → Rn and D : D → Rn×d are con-
tinuous, E , f −1(0) ∩ D−1(0) , {x ∈ D : f (x) = 0 and D(x) = 0}
is nonempty, and Ix(0) = [0, τx(0)), 0 ≤ τx(0) ≤ ∞, is the maximal
interval of existence for the solution x(·) of (2). An equilibrium point
of (2) is a point xe ∈ Rn such that f (xe) = 0 andD(xe) = 0. It is easy
to see that xe is an equilibrium point of (2) if and only if the con-
stant stochastic process x(·) a.s.

= xe is a solution of (2). We denote
the set of equilibrium points of (2) by E , {ω ∈ Ω : x(t, ω) =

xe} = {xe ∈ D : f (xe) = 0 and D(xe) = 0}.
The filtered probability space (Ω,F , {Ft}t≥0, P) is clearly a

real vector space with addition and scalar multiplication defined
componentwise and pointwise. A Rn-valued stochastic process x :

[0, τ ] × Ω → D is said to be a solution of (2) on the time
interval [0, τ ]with initial condition x(0) a.s.

= x0 if x(·) is progressively
measurable (i.e., x(·) is nonanticipating and measurable in t and ω)
with respect to {Ft}t≥0, f ∈ L1(Ω,F , P),D ∈ L2(Ω,F , P), and

x(t) = x0 +

 t

0
f (x(σ ))dσ

+

 t

0
D(x(σ ))dw(σ) a.s., t ∈ [0, τ ], (3)

where the integrals in (3) are Itô integrals.
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