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a b s t r a c t

In classical adaptive control the parameters are assumed to be fixed or slowly time-varying. In order to
facilitate parameter estimation/tuning it is desirable to have the set of admissible parameters lie in a
convex set; if this set is not convex, a common trick is to replace it with its convex hull, but the adaptive
control problem is challenging if stabilizability of the set of admissible parameters is lost. However, such
a convexity assumption is an artifact of the approach to the problem, rather than an inherent constraint,
since most logic-based and supervisory approaches to the problem make no such requirement. On the
other hand, herewe show that losing stabilizability on the convex hull of the set of admissible parameters
plays an important role in the adaptive control of rapidly time-varying systems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In classical parameter adaptive control, restricting the set of
admissible parameters to a convex set is useful in carrying out pa-
rameter estimation/tuning, e.g. see [1]. Of course, if the set of ad-
missible parameters is not convex, it is natural to replace it with its
convex hull; however, this can create the problem of introducing
uncontrollable or unobservable modes, which can create difficulty
in proving that the associated adaptive controller is stabilizing. This
has spurred a fair bit of effort to get around this problem, e.g. see
[2,3], and [4]. These methods have been successful, and are effec-
tive in controlling plant models whose parameters are either fixed
or slowly time-varying; this is also true of most logic-based and
supervisory approaches to adaptive control, e.g. see [5,6].

Now let us turn to the adaptive control of rapidly time-varying
systems. This problem is very difficult, and only limited results
have been obtained, each of which requires fairly rich structure on
the plant model:

(i) the form of the time-variations (or at least of the fast terms) is
assumed to be known (e.g. see [7,8]);

(ii) the only uncertainty is a gain at the input, e.g. see [9];
(iii) the plant has stable zero dynamics (roughly speaking,

this is the time-varying counterpart of minimum phase),
e.g. see [10–15];

E-mail address:miller@uwaterloo.ca.

(iv) the plant has unstable zero dynamics but several stringent
matching requirements must hold—see [16,17].

In this paper our goal is to ascertain performance limitations in
the adaptive control of rapidly time-varying systems. To avoid
imposing unnecessary structure on the set of admissible plant
parameters (such as connectedness), we restrict our attention to
that of jumps in the plant parameters. We demonstrate that, in
two important cases, if the convex hull of the set of admissible
parameters does not possess a weak notion of stabilizability, then
regardless of the controller used, the performancemust necessarily
degrade rapidly as the time between parameter jumps decreases.
This provides an inviolable bound on the achievable performance
of any adaptive controller for such a rapidly time-varying uncertain
system.

2. Mathematical preliminaries

Let Z denote the set of integers, Z+ represent the set of non-
negative integers, N denote the set of natural numbers, R denote
the set of real numbers, R+ represent the set of non-negative real
numbers, and C represent the set of complex numbers.Wewill use
the Euclidean norm to measure the size of a vector: for x ∈ Cn, we
define ∥x∥ := (

n
i=1 |xi|)1/2. The corresponding induced norm of a

matrixA ∈ Cm×n is defined in a usualmanner: ∥A∥ = sup∥x∥≠0
∥Ax∥
∥x∥ .

If x ∈ Cn we use xT to denote the transpose and x∗ to denote the
complex conjugate transpose.
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For a given set S ⊆ Rm×n, we let PC(S) denote the set of all
piecewise continuous functions f : R+

→ S. To measure the size
of f ∈ PC(S), we define
∥f ∥∞ := sup

t∈R+

∥f (t)∥; 1

we let PC∞(S) denote the set of all f ∈ PC(S) forwhich ∥f ∥∞ < ∞.
With Ts > 0, we let PCcon(S, Ts) denote the set of all f ∈ PC(S)
which are piecewise constant with a minimum time of Ts between
discontinuities. Last of all, we let conv(S) denote the convex hull
of S.

3. The setup

Here we will model the plant uncertainty as follows. For a
suitable l ∈ N we start with a compact set Θ ⊂ Rl. With A : Θ →

Rn×n, B : Θ → Rn×m and C : Θ → Rr×n continuous functions, and
θ ∈ PC(Θ), we consider the time-varying plant
ẋ(t) = A(θ(t))x(t) + B(θ(t))u(t), x(0) = x0 (1)
y(t) = C(θ(t))x(t); (2)
here x(t) ∈ Rn is the state, y(t) ∈ Rr is the measured output, and
u(t) ∈ Rm is the control input, and we associate the plant with the
triple (A(θ(·)), B(θ(·)), C(θ(·))), or simply P . While the set Θ as
well as the functions A, B, and C are known, the variable θ ∈ PC(Θ)
is neither knownnormeasurable. The control objective here is a form
of stability, so it is reasonable to restrict θ to a subset of PC(Θ); we
consider the case of time-variations which are simply jumps, with
a minimum distance separating them: with Ts > 0, we consider
the subset PCcon(Θ, Ts). Associated with this set of admissible θ ’s
is the set of possible plant models:
P (Ts) := {(A(θ(·)), B(θ(·)), C(θ(·))) : θ ∈ PCcon(Θ, Ts)}.

Remark 1. It turns out that the choice of C plays no role in the
results which we prove here. However, we will allow a general
form for C(θ) to emphasize the general applicability of the result.

Remark 2. In classical adaptive control many results are proven
for the case of fixed parameters. The setup that we adopt here
allows this—it corresponds to the case of Ts = ∞.

The control objective is to stabilize the system even though
there are rapid variations in θ(t), which is an adaptive control
problem. It is traditional in adaptive control to prove veryweak no-
tions of stability, often proving only that the system iswell behaved
asymptotically, with no uniformity over the admissible models in
P (Ts). However, more recently, techniques such as the supervi-
sory control method of Morse, e.g. see [5,6] (see the Concluding
Remarks Section of the latter), and the periodic probing, estima-
tion and control technique of the author, e.g. see [11,18,15,9,19,
17], have been used to prove stronger uniform notions of stability,
even when the parameters are varying, as illustrated in the follow-
ing definition.

Definition 3. With K : PC(Rr) → PC(Rm) and Ts > 0, we say that
the controller

u = K(y) (3)

is admissible for P (Ts) if, for every P ∈ P (Ts), the closed-loop
system is well-posed: for every x0 ∈ Rm there are unique u ∈

PC(Rm) and y ∈ PC(Rr) which satisfy the plant model Eqs. (1)–(2)
and the controller Eq. (3), in which case we let Φ(x0, P) denote the
map x0 →


x
u


from Rn

→ PC(Rn) × PC(Rm). If K is admissible for
P (Ts) then we say that K stabilizes P (Ts) if

1 Here we will be allowing sampled-data controllers, so we cannot use ‘‘ess sup’’
here.

(i) Φ(0, P) = 0 for every P ∈ P (Ts) and
(ii) the following quantity

γ (K , P (Ts)) := sup


∥Φ(x0, P)∥∞

∥x0∥
:

x0 ∈ Rn is nonzero and P ∈ P (Ts)


is finite.

From Definition 3 we see that if K stabilizes P (Ts), then

∥Φ(x0, P)∥∞ ≤ γ (K , P (Ts))∥x0∥

for every x0 ∈ Rn and P ∈ P (Ts). Here the goal is to bound
γ (K , P (Ts)) in certain circumstances. As observed in Remark 1,
C(θ(·)) plays no role in our result. To this end, we now define the
convex hull of the admissible (A(·), B(·)) pairs: with µ playing the
role of a dummy variable, we define

H := conv{(A(µ), B(µ)) : µ ∈ Θ}. (4)

The question at hand is: if there is a pair in H which
loses stabilizability, what is the consequence on stabilizing the
corresponding set P (Ts)? Of course, if Ts = ∞, then we have the
classical adaptive control setup of no time-variations, and there are
general techniques such as supervisory control [5,6] as well as the
periodic probing, estimation and control technique of [18] which
yield stability. So the real concern is that this loss of stabilizability
may impact the situation when Ts < ∞, measured in terms of a
lower bound on γ (K , P (Ts)). Here we will show, under suitable
assumptions, that γ (K , P (Ts)) must necessarily be large if Ts is
small. We consider three situations:
• In Section 4, we consider the case of B being fixed, andwe prove

that if ‘‘weak stabilizability’’2 is lost then γ (K , P (Ts)) → ∞ as
Ts → 0.

• In Section 5, we assume that A is fixed and B is variable, and
provide an example from the literature which demonstrates
that no general result is provable.

• In Section 6, we consider the general case of allowable
variations in both A and B, but consider a special controller
structure associatedwith step tracking; in this situation a result
similar to that of Section 4 can be proven.

4. The Case of time-variations in A(θ(·)) Only

In this case we assume that the only variation is in A, i.e. we
assume that B(θ(·)) is constant, so we simply represent it by B. To
proceed, we first define

A := {A(µ) : µ ∈ Θ} ⊂ Rn×n.

We now introduce a weak notion of stabilizability, which
differs from the classical notion of stabilizability by not deeming
eigenvalues on the imaginary to be in the ‘‘bad region ’’.

Definition 4. (A, B) is weakly stabilizable if

rank

A − λI B


= n (5)

for all λ ∈ C satisfying Re λ > 0; H ⊂ Rn×n
× Rn×m is weakly

stabilizable if every pair (A, B) ∈ H is weakly stabilizable.

We now prove that if (conv(A), B) is not weakly stabilizable,
then the closed-loop performance provided by a controller for
P (Ts) is bounded below by a function of Ts. Before proceeding,
define

ā := sup
θ∈Θ

∥A(θ)∥, b̄ := ∥B∥.

2 This is a slightly weaker version of the usual notion of stabilizability and will be
defined shortly.
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